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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 261k

ANATYTTCAL INVESTIGATION OF SOME THREE-DIMENSIONAL
FLOW PROBLEMS IN TURBOMACHINES

By Frank E. Marble and Irving Michelson
SUMMARY

One problem encountered in the theory of turbomachines is that of
calculating the fluid velocity components when the inner and outer
boundaries of the machine as well as the shape of or forces imparted by
the blade row are given. The present paper discusses this problem under
the restrictions that the fluid is inviscid and incompressible and that
the blade rows consist of an infinite number of infinitely thin blades
so0 that axially symmetric flow is assumed.

It is shown, in general, that the velocity components in a plane
through the turbomachine axis may be expressed in terms of the angular
momentum and the leading-edge blade force normal to the stream surfaces.
The relation is & nonlinear differentisl equation to which analytic solu-
tions may be obtailned conveniently only after the introduction of linea-
rizing assumptions. A quite accurate linearization is effected through
assuming an approximste shape of the stream surfaces in certain nonlinear
terms.

The complete linearized solution for the axial turbomachine is
given in such form that blade loading, blade shape, distribution of
angular momentum, or distribution of total head may be prescribed. Cal-
culations for single blade rows of aspect ratio 2 and 2/3 are given for
a radius ratio of 0.6. They indicate that the process of formation of
the axial velocity profile may extend both upstresm and downstresm of
a high-aspect-ratio blade row, while for low aspect ratios the major
portion of the three-dimensional flow occurs within the blade row itself.
When the through-flow velocity varies greatly from its mean value, the
simple linearized solution does not describe the flow process adequately
and a more accurate solution applicable to such conditions is suggested.

The structure of the first-order linearized solution for the axial
turbomachine suggested a further approximstion employing a minimizing
operstion. The simplicity of this solution permits the discussion of
three interesting problems: Mutual interference of neighboring blade
rows in a multistage axial turbomachine, solution for a single blade
row of given blade shape, end the solution for this blade row operating
at a condition different from the design condition.
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It is found that the interference of adjacent blade rows in the
multistage turbomachine may be neglected when the ratio of blade length
to the distance between centers of successive blade rows is 1.0 or less.
For velues of this ratio in excess of 3.0, the interference may be an
important influence. The solution for the single blade row indicated
that, for the blade shape comsidered, the distortion of the axial
velocity profile caused by off-design opergtion is apprecigbly less for
low- than for high-aspect-ratio blades.

To obtain some results for g mixed-flow turbomachine comparable
with those for the axial turbomachine as well as to indicate the essen-
tial versatility of the method of linearizing the general equations,
completely analogous theoretical treatment is given for a turbomachine
whose inner and outer walls are concentric cones with common apex and
whose flow is that of a three-dimensional source or sink. A particular
example for a single rotating blade row is discussed where the angular
momentum is prescribed similarly to that used in the examples for the
axial turbomachine,

INTRODUCTION

Barly investigations of the flow through turbomachines were con-
cerned primarily with the flow through a typical annulus of small radial
extent and hence treated the flow as essentially two-dimensional. The
work of Betz (reference 1), Weinig (reference 2), and Keller (refer-
ence 3) employs this approach and is of particular importance inasmuch
as it emphasizes the aerodynaemic concepts of the blade-airfoil sections
and airfoil cascades in contrast with the older but still useful point
of view which regards the space between two blades as a sort of channel
and. tregts the flow accordingly. Out of the aerodynamic approach grew
the present extensive theoretical literature on arbitrary airfoil grids
or cascades characterized by the work of Kawada (reference 4), Pistolesi
(reference 5), Garrick (reference 6), and Lighthill (reference 7).

These concepts have also exerted considereble influence on the experi-
mental investigation of turbomachines, for much of the useful experi-
mental information has appeared as results of tests on alrfoil cascades
such as those of Christiani (reference 8), Shimoyama (reference 9), and
Bogdonoff (reference 10).

This "annulus" theory of turbomachines assumes negligible inter-
ference between the flow in adjacent and neighboring annular regions.
Such conditions are fulfilled rigorously only in the so-called vortex
turbomachine, in which the tangential velocity distribution is every-
where that of a potentisl vortex. The behavior of a blade operating
in or imparting this type of flow has certain properties in common with
the rectilinear flow past a uniform infinite wing in that no trailing
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vortices are shed in either case, the flow downstream of the airfoils
being irrotational. The flow in this variety of turbomachine is
restricted to one of constant stagnation enthalpy in any plene normal
to the axis of revolution and to the particular distribution of tan-
gential velocity. This is a rather severe limitetion and more general
distributions of both enthalpy and tangential velocity seem very
desirable,

Complicetions in the more general treatment arise, however, because
a8 variation of stagnation enthalpy in the radial direction or a varia-
tion of the tangentisl velocity from that of a potential vortex usually
implies a variation of the axial velocity. Consequently, slthough it
seems reasonsble that the results of the cascade theory and experiment
are nearly valid for this case, there is a question as to the free-stream
flow in which the cascade should be situated so as to correspond with the
local conditions it experiences within the actual turbomachine, The
egtimate of the effective free-stream flow consists largely in estimating
the local distribution of axial veloclity. A need for this estimate was
recognized by workers in the field and treated analytically by several,
among whom were Traupel (reference 11), Ramnie (in unpublished reports),
Eckert and Korbacher (reference 12), and Sinnette (reference 13).

In these investigations the distribution of axial velocity is
approximated by assuming axial symmetry (that is, an actuator disk
theory where the flow 1s generated by an infinite number of blades of
either negligible or finite chord) and neglecting the effects of radial
acceleration of the fluid., Then the centrifugal force within the
rotating £luid body is balanced by only the radial pressure gradient.
The flow calculated in this manner is in reality that which exists far
downstream of the blsde row where radigl velocities and accelerations
have vanished. Unfortungtely this analysis does not provide informa-
tion on how rgpildly the change in velocity pattern takes place as the
fluid passes the blade row. It is clear that a portion of the change
of axial velocity tekes place before the blade row is encountered in
a manner similar to the change in axial velocity which takes place ahead
of the disk of a free propeller (reference 14%). The velocities involved
are those induced by elther the bound or trailing vortex system. This
vortex system was discussed by Ruden (reference 15), but he carried out
no detailed calculations based on his vortex picture.

The f£irst detailed analysis of the three-dimensional flow in turbo-
machines was given by Meyer (reference 16) in his consideration of the
flow through a stationary blade row. Meyer gives the solution for
the blade row which sheds no trailing vorticity although the flow may
be rotational and of a complicated nature within the blade row. The
modification caused by a finite number of blades is also treated. The
method used by Meyer depends upon the fact that the problem may
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be linearized within the blade row. A method for treating the problem
where neither blade shape nor boundary contour 1s prescribed in advance
has been discussed by Dr. H. Reissner (reference 17).

To allow at least an approximate treatment of the general blade
row with prescribed wall geometry, a linearized analysis of the problem
was proposed (reference 13) where the trailing vorticity is supposedly
transported by the mean axial velocity, and the blade row is made up of
an infinite number of blades of finite chord. In a sense, this inves-
tigation was complementary to that of Meyer. The analysis for the
inverse problem, in which the blade forces are prescribed, was carried
out in detail and was found to allow a reasonably simple general
solution.

The results indicated that for blades of large aspect ratio the
rate of formation of the velocity profile could be of importance in the
three~dimensional flow process and in the blade design, Consequently,
it seemed desirgble to extend the analysis to further problems where
physically important results could be obtained even under the severe
limitetions of infinite blade number, inviscid fluid, and so forth.
Such problems include the direct problem, off-design operation, and
interference in a multiple-blade-row machine. The work which has been
done toward this end is described in the present paper.

The original analysis of the linearized theory was presented in a
somevhat inconvenient manner for the purpose of allowing physical inter-
pretation of some of the mathematical steps. PFor the sake of complete-
ness in the present work, the analysis of the inverse problem is pre-
sented, but in a more concise form - one which g8l1s0 allows a direct
extension to a linearized version of the direct problem. That such an
extension should be possible is almost self-evident. For, if a solu-
tlon exists for the case where the force components are prescribed, it
is no great modification to give the solution when the components of
the blade normal, proportional to the force components, are prescribed.
The normal to the blade has a condition to be sgtisfied which is relsted
to the fact that the elements of the blade must fit together so as to
form a continuous surface., This restricts somewhat the independence of
choosing the distribution of the blade normal and it has been pointed
out by Bauersfeld (reference 19) that this same restriction also limits
the choice of the force distribution.

The computation involved in finding the three-~dimensionsl flow in
any perticular case is rather lengthy and not of & particularly simple
neture becaguse of the Bessel functions introduced by the cylindrical
boundary. Using the Green's function formulation for the solution,
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it becomes a rather simple matter to set up a numerical-integration
method suitable for use on a punch-card machine. The numerical inte-
grations were carried out by Mr. William Chaplin of the Southern
California Coopergtive Wind Tunnel and Mr, Thomas Vrebalovich of the
Ten-Foot Wind Tunnel at the California Institute of Technology. Using
this method, examples have been computed for blades of both high and
low aspect ratio. Clearly the accuracy of such a linearized process

is always open to question because there exists no general manner of
meking a positive estimate of the error involved in the approximations.
Fortunately, however, Bragg and Hawthorne (reference 20) have recently
discussed a problem which may be employed to give a check in one par-
ticular case. The problem solved by these authors is that of calculating
the velocity induced by a distribution of vorticity which satisfies the
equations of motion and is therefore an exact solution for some partic-
ular blade loading. It seems appropriate to find, a posteriori, the
angular momentum distribution corresponding to this solution and then
to solve the corresponding linear problem. The results would constitute
a direct check on the accuracy of the linearized solution in one par-
ticular case. This analysis is not carried out here.

The flow calculated by the linearized approximation has, however,
a curious characteristic which renders it inadequate for a particular
but rather importent problem. This difficulty esppears when one solves
the direct problem and notes that the interasection between the blade
rov and the fluid is not modified by changes in the axial velocity pro-
file far upstream of the blade row. This is, of course, the direct
result of the assumption that all variations in the axial velocity are
small. However, problems arise in multistage turbomachines where the
axial velocity variations may become spprecisble and hence the linearized
solution omits the factor of primsry importance: The effect of con-
tinual variation of axial velocity upon the response of the flow to a
given blade row. To cope with this difficulty, a solution is worked
out which includes the first-order variation of the axial velocity and
allows treatment of the above problem. In spite of the increased com-
plexity of the calculation, it is still possible to employ the same
general numerical method used in the simpler sgpproximations.

Although the mathematical content of the linearized solution is
simple, the amount of labor involved in achieving the solution to even
a simple problem is somewhat forbidding. Furthermore, the results
appear either as a rather complicated expression or in the form of
tables and curves, neither of which allows much further analysis. Con-
sequently, it was attempted to find a solution which, although still
less exact, possessed a simple closed form in terms of elementary func-
tions. The exponential approximation, introduced in reference 18,
appeared to compare most favorably with the detailed results of the
linearized solution. Its extreme simplicity mskes it most useful and
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in the present paper its application is extended to multistage axial
turbomachines, to the direct problem, and to off-design operation. The
results indicate it to be particulerly well-suited to the study of
mutual interference of neighboring blade rows,

It is recalled that the general philosophy on which the linearized
solution was based was simply that the vorticity could be considered
to be transported with the mean flow and not by the perturbation veloc-
ities; that is, disturbances in the radial and axial velocity are small
in comparison with the mean axial velocity. There is clearly nothing
singular sbout the application of this principle to axial flow and
in particular it is possible to use it in the study of the so-called
mixed-flow turbomachine. The solution has been obtained for a turbo-
machine whose walls consist of two coaxial cones and whose mean flow
is that of a source or sink. The linearized solution is developed in
analogy with that previously undertasken for the axial turbomachine.

The mixed-flow problem introduces only the additional complication that
the tangential vorticity component, which produces the varilation in the
through-flow velocity, varies as it is transported downstream hecause
of its continual change of radius.

The epproximations which ere made in the following work render the
methods inappropriate for the treatment of some very important turbo-
machine problems. It is clear that at some point the effects of vis-
cosity must become of considerable influence in multistage machines.
The importance of this phenomenon was recognized by Weske (reference 21)
and has been observed by Rammie and his coworkers (reference 22). It
appeared from Rannie's investigations on a three-stage axial compressor
that the fine details of the axial velocity profile could be obscured
by wall boundary layer and blade wakes., Hence it seems likely that
more realistic considerations of some multistage turbomachine problems
should account at once for viscosity effects., However, it is equally
clear, therefore, that the large class of problems which may logically
be treeted under the assumptions of perfect fluid and infinite blade
number need be carried only to an accuracy necessary to investigate the
phenomenon and to explore its magnitude.

The work described in this report was carried out under the spon-
sorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOIS

r,0,z cylindrical coordinates

u velocity in direction r
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v velocity in direction 6

W velocity in direction =z

E vorticity in direction «r

1 vorticity in direction 6

€ vorticity in direction =z

Fp blade force impacted in direction r

Fg blade force impacted in direction 6

F, blade force impacted in direction =z

n., component of blade surface normal in direction r

ng component of blade surface normal in direction 6

n, component of blade surface normal in direction =z

a varigble of integration corresponding to varisble r

B varigble of integrgtion corresponding to varigble z

Jo Bessel function of first kind and order zero

Yo Besgel function of second kind and order zero

Ji Bessel function of flrst kind and order one

Yy Bessel function of second kind and order one

Uo linear combingtion of Bessel function of order zero
(Jo(en;)yi(enrl) - Jl(enrl)Yb(Gn;))

U1 linear combination of Bessel function of order one

(Jl(enr)Yl(Enrl) - Jl(enrl)Yl(Gnr))
€n characteristic number for Bessel function Ul

Vn norm of Bessel function Uy




G(r:ZS G:B)
K(r,z; o,B)
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kernels arising in integral expression for stream
function in cylindrical coordinates

fluid static pressure
fluid total pressure (p + % p(uz + Ve + wz))

fluid density

f£luid total head (P/p)

angular velocity of blade row

stream function in cylindrical coordinate system
velocity in meridional plane, cylindrical coordinates

distance measured along stream surfaces in meridional
plane

spherical polar coordinates
velocity in radial direction R

longitudinal velocity (sbout polar axis) in
direction 6

azimuthal velocity (away from polar axes) in
direction

vorticity component in direction of R
vorticlty component in direction of 6
vorticity component in direction of ¢
cos ¢ .
blade force in direction of ¢

assoclated Legendre function of first kind,
degree n4
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Qni(l)(u)

Hni(l-l)

¥

nj

vn4{

L(R,p; o,B)

¥(R,0)
Ug

R

a,al,ag,k,r

1(p,8)

associated Iegendre function of second kind,
degree n4

linear combination of associated Legendre functions

(Pni(l)(“)Qni(l)(“l) i} Pni(l)(“l)Qni(l)(“))

dimensionless form of

characteristic numbers for Hhi(p)

norm of Legendre function Hhi(p)

kernel arising in integral expression for stream
function in polar coordinagtes

stream function in polar coordinates

velocity in meridional plane, polar coordinates

ratio of blade length to projection of actual blade
chord upon meridional plane

projection of actual blade chord upon meridional plane
referred to as '"blade chord"

distance from leading edge of one blade row to
leading edge of following blade row

distance from center of blade loading to trailing
edge

Ip - I
blade spacing ratio =g

number of blade rows in a multistage turbomachine

constants

angle between blade-row trailing edge and plane normal
to turbomachine axis

impulse function which has value unity in region
B - 8/2, B+ 8/2 and vanishes elsewhere
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Subscripts:

k blade row number in axial-flow turbomachine

8 glong stream surface in meridional plane

v normal to stream surfaces

o’ zeroth approximation

1 turbomachine blade root

2 turbomachine blade tip

r component in radial direction (cylindrical
coordinates)

6 component gbout axis of symmetry (cylindrical
coordinates)

zZ component along axis (cylindrical coordinates)

& component in direction &

T components of the trailing edge of blade row

Superscripts:

(1) uniform flow in sbsence of blade rows

(2) deviations from uniform based on simple radial
equilibrium

(3) devigtion of flow caused by finite radial acceleration

* conditions for which blade row in question was
designed

Mathematical symbols:

[] Jump across a discontinuity of value of quantity
included in bracket

sgn( ) algebraic sign of quantity included in parentheses

Ri( ) real part of quantity included in parentheses
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modulus or gbsolute value of quantity

mean value

DESCRIPTION OF FLOW THROUGH A TURBOMACHINE

The problem of three-dimensional flow through a turbomachine will
be studied by ideslizing the problem to one involving the flow of a
perfect fluid between two infinite concentric surfaces of revolution.
For simplicity these surfaces may be visualized as circular cylinders
es indicated in figure 1, although the treatment is general. It is
convenient to employ a system of cylindrical coordinates r, 0,
and 2z, and to denote the velocity components in each of the coordinate
directions as u, v; and w, respectively. In the following analysis
it will be assumed that the flow is axially symmetric, and consequently
all partial derivatives with respect to the angular vaeriable 6 will
vanish. This is physically equivalent to assuming that the flow pre-
scribed far upstream of any blade row is axially symmetric and that the
blade rows are made up of an infinite number of similar infinitely thin
blades. As a consequence of axial symmetry, the vorticity components
mey be written in the form

“~
..

£ = oz
- Qu _ 9w .

"= o (1)
)

gmI‘aI"(vr) w

Now it is well-known (reference 24) that a knowledge of the vor-
ticity distribution and appropriate boundary conditions is equivalent to
a knowledge of the velocity distribution. As 1n the case of the finite
wing, it is advantageous to work with the vorticity components because
of the simple conservation properties they possess and to calculate the
complete velocity field from the velocity fields associated with the
individual vorticity components. From the assumption of axial symmetry,
it is clear (fig. 2) that only tangential velocity is induced by the
radigl and axial vorticity components while both radial and axial
velocities are assoclated with the tangential component of vorticity.
This relationship is clarified by the introduction of a stream function.
Because of axial symmetry, the continuity equation is simply

_+E+QW_=O (2)
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and is identically satisfied by choosing the stream function V(r,z)
with the properties u===— and w = - l-éi. As a consequence, the
flow may be described kinematically by the stream function V¥ and the
tangential velocity component v. The tangential vorticity is therefore
expressed in terms of the stream function

2
n=;€i,;ﬂ+§% (3)

When the distribution of tangential vorticity is known together with
the appropriate boundary conditions, the stream function may be found
through solution of the partial differential equation (3).

As yet only the kinematics of the flow have been considered, and
it is obvious that the distribution of the tangential vorticity may
not be prescribed arbitrarily but rsther only under the dynamical
regtrictions imposed by the equations of motion. If the total head,
the equivalent of total enthalpy for an incompressible fluid, is denoted

P P + u2 + v2 + w2

in the conventional fashion H = E = o
2

local fluid pressure, the Eulerian equgtion may be written, taking
account of the axial symmetry, in the form

vhere p 1is the

dv. oW oH

SE-S_{—-FI'-F‘B_I‘. (’-l-)
.a_w._.éE=—F 5)
3t o ° (
u ¥y & (6)

F, +
on of Z dz

The force components exerted by the blede row are denoted F,., Fp,
and F,.

In the following analysis it will be convenient to express deriva-
tives along and normal to the stream surfaces V¥ = Constant in terms
of the ususl derivatives in the axial and radial directions. If s
denotes the distance along & given stream surface (fig. 3) measured
from an arbitrary point and Vg +the meridional velocity along a given
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stream surface, then these directional derivatives are most conveniently
expressed ’

2.220,%2 (7)

and

B wB uB (8)

I‘VSS—=———-—-+———
v Vg or Vg Oz

Multiplying the first equation of motion (equation (%)) by u and the
third equation of motion (equetion (6)) by w, adding the results, and
taking account of the transformation equation (7), it follows that

_g.g - {TIEEUFI' + WEF,) + v(ub - wg{'

Further simplifying the right side of this relastion by use of the second
equation of motion (equation (5)), the change of total head along the
stream surfaces becomes

%g = é%(UFr + vFg +‘sz) (9)

Therefore the total head remains constant along stream surfaces when
the force system vanishes as it does, for example, outside of blade
rows., The force system Fy, Fg, or Fz, however, is not completely
arbitrery but is restricted to be one that can be imparted by a set of
s0lid surfaces in an ideal fluid. Because of the vanishing shearing
stress, the force exerted on the fluid by a surface must be normal to
the surface; that is, it must be caused by a pressure difference. How-
ever, the fluid velocity relative to the blade 1s parallel to the blade
at the surface (fig. 4) and consequently is normal to the force exerted
by the blade. The kinematic condition on the force vector Fn, Fy,

or F, is then that it be normal to the relative velocity past the

blade. For the turbomachine problem, the only possible motion of the
blade row is a rotation gbout the axis of symmetry so that the velocity
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components relative to a blade row rotating with an angular velocity o
are u, Vv - dar, and w., The condition that the force be normsl to the

relagtive velocity is simply

uF, + (v - anr)F6 + WP, =0 (10)

~and consequently the three force components are not independent. Then
it is clear from equations (9) and (10) that

&I&

w
= — rF (11)
e
VS

Now, more precisely, it appears that the total head is invariant along
stream surfaces when either the tangential force component or the
angular velocity of the blade row vanishes.

The total head is not the only quantity with such invariant prop-
erties, for the second equation of motion may be written

d(vr)
Js

Vs

—
¢l
+
=
¢l
-
j -
m

rFg (12)

The term vr 1s equivalent to the local moment of momentum by virtue
of the axial symmetry. It follows from equation (12) that the moment
of  momentum about the symmetry axis is also invariant along stream
surfaces outside of any blade row and within the blade row changes at
a rate proportional to the moment of the tangentlal blade force.

By comparison of equations (11) and (12), it is seen that

%E = gl (arv), and therefore the total head cemn differ from the term

8 s

orv by, at most, a quantity depending upon the stream function alone.
Hence it is possible to write H = arv + F(¥) although it is more con-
venient to write this in the form

H - By(¥) = afrv - (zv)y (13)
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where Hi(¥) and (rv), are the values of the total head and angular

momentum in the region between the kth and (k - 1)th blade rows (fig. 5)

and equation (13) is then valid between the (k - 1)th and (k + 1)th
blade rows.

The problem still at hand, however, is to express the tangential
vorticity 7 in terms of dynamical variables by means of the equations
of motion (%) to (6). Some progress in this direction may be made by
computing the variation of total head normal to the stream surfaces
according to equation (8). Then, utilizing the equations of motion,

3 _ _1 (_w@w_ag)

oY rVBE or oz
_n i a(VI‘) 1 -WFI. + UFZ
L+ = (vr) S + ~ 7 (14)
However
uFZ - wFr
v =Ty

where FW is the force component normal to the stream surfaces and

Vg = que + We is the total velocity component along the stream surface

in the meridional plane. The tangential vorticity may then be expressed
in the form

18 L)) - S (15)

rvs

of which Bragg and Hawthorne (reference 20) have given the special case
which is valid outside the blade row. Equation (15) is equivalent to
the expression obtained for the tangential vorticity in reference 18,
for if the total head be written in terms of the angular momentum

d F
oo 5w - wf)gtm) - e (16)

which upon linearization reduces to the form previously given.
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In addition to equation (10), there exists another condition among
the blade forces which arises from the fact that these forces must be
produced by a series of continuous blade surfaces. The forces must be
normal to the blade surface as well as to the stream surfaces and an
additional limitation is thereby imposed on the prescribed force system,
If B(r,6,z) 1is a function which is constant along the blade surface
and such that Igrad B| =1, +the unit normal to the surface is given
by grad B. Therefore if A(r,z) is the blade loading or magnitude of
the blade force, the blade force vector may be written

F = Mr,z)erad B
from which it follows that
Fecurl F =0 (17)

Expressed in terms of derivatives along and normal to the stream surfaces,

this condition is
af v \_ ELG%i)

where, utilizing equation (10) to express the right side of this relation,

o [Ty =-i—-é——-"r"°r2> 18
BE(I’ZVSFG 3‘3( Vg (0)

It now appears that the force component Fy is not independent of the
angular momentum vr. In fact, upon integration along a streamline and
substituting for Fg from equation (12),

_ ou2 fs_a_vr-a)re 3(zv)
F\y I‘VS E(W) + 5 a\lf( I'2Vs )ds Bs (19)

The integration with respect to s Dbegins at the leading edge of the
blade for each stream surface and this is indicated by the lower limit Bge
(Since the origin of s is undefined, it is conveniently taken at the
blade leading edge in order that so = 0.) The significance of the
function A(V¥) is now clarified. At the leading edge, the initial

value of the loading is given by

o(vr)

S

-TVs2A(Y)
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If, in particular, the blade leading edge is a radial line, then Fy =0
and A(Yy) venishes. The function A(Yy) is indicative of the leading-
edge shape.

In its general form, the differential-integral equation for the
stream function may be written

32y Lav . ¥y _ 2y
2 TS + 7" ~(vr - ar )gg(vr) +
2v,|A(y) fsa—x———“"“”ad O (vr) + 2 (¥) (20)
+ —— —
r=Vg|Aly o v r2VS s Yy vr) + rg;
Wwhere

g (V) = g_w By - a»(rv)k]

Because of the manner in which the stream function enters on the
right side of equation (20), the problem is usually nonlinear. Singular
cases where it becomes linear with no gpproximation have been discussed
in reference 20. The boundary conditions for the equation are given
values of the stream function ¥ on the inner and outer surfaces and
complete information on the stream function far ghead of the blade row.
In general, very little information may be prescribed far downstream of
the blade row except for special geometry of the inner snd outer bounding
surfaces. When the boundaries are cylindrical, for example, the radial

1% _

velocity vanishes (; S_ = ) both far upstream and far downstream of
z

the blade row. To specify the problem completely it is necessary also
to prescribe sufficient information to determine the left side of equa-
tion (20) as a function of r, 2, and V. From the knowledge of flow
conditions upstreem, g(¥) is fixed and the remaining information may
be prescribed in several ways. The two general physical problems lead
to:

(1) Prescribing some combination of blade forces, total head, and
angular momentum distribution. These problems will be denoted the
inverse problem; within the framework of linearized theory they are
identical.

(2) Prescribing the shape of the blade. This is known as the direct
problem,
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Because of the nonlinearity of the differential equation (20), it
is difficult to discuss whether or not a given boundary-value problem
leads to a solution. Therefore the mathematical formmlation of these
problems will be deferred until the discussion of the linearized theory
has been completed.

LINEARIZED PROBLEM FOR AXTAT, TURBCQMACHINE

The nonlinearity which occurs on the right side of the fundamental
differential equation (20) is an expression of the physical fact that
the angular momentum, the total head, and consequently the tangential
vorticity component possess simple conservation properties (equa-
tions (11) and (12)) along stream surfaces - surfaces which are not
known uptil the problem is solved. The method of linearization which
naturally suggests itself is that of substituting for the stream func-
tion on the right side of equation (20) an approximate value given in
terms of the independent varisbles r and z. Then equation (20)
becomes a well-known inhomogeneous linear differential equation. The
substitution of an approximaste stream function implies the physical
approximation that the simple conservation relations hold, not along
the ultimate stream surfaces but rather along a set of predetermined
gsurfaces which from "physical intuition" promise to be reasonably close
t0 the true stream surfaces. Thus, as in most approximate processes,
physical judgment pleys an importent role in determining the final
accuracy. For, if the approximation chosen for the stream function
heppened to be the correct one, the resulting solution would be exact,
and, as the approximate stream function differs more from the true one,
it is expected that the result will differ more from the exact solution.

For the solutions of the axial turbomachine, it is reasonably accu-
rate, particularly when the ratio of the inner to outer dlameters is
close to unity, to approximate the stresm function as that of the undis-
turbed mean flow,

= -2 (21)

where w, 1is the average through-flow velocity. Then since ay = -w,r dr

and the direction of the normel to the stream surfaces is radial, the
right side of equation (20) simplifies to give

aat],r 1 .a_‘lf_ + 82‘«!" - vr - cur2 a('V'I') _ rFr + rzgl(r) (22)

dr2 T ar 3zf Yo r or Yo
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where
z 2
Fp = |TWothl(T) —f :—r("r ;2“’1“ )dz aé:r) (23)
20
and
A (r) = AYg)

In accordance with this approximation, the total head, moment of momentum,
and tangential vorticity remain constant along circular cylinders outside
the blade rows and vary in a known menner within the blade rows. In the
lenguage of wing theory the vorticity trailing from the blade row is
transported by the mean velocity w, and not by its own induced velocity.

The linearized equation (22) is simply a linear second-order equa-
tion of the elliptic type with an inhomogeneous term which depends upon
the conditions prescribed on the blades and far upstream of the blades.
The inner and outer boundaries are concentric cylinders of radii Ty

and rp, respectively, on which the stream function is constant. Fur-

ther, because of the wall geometry, it is clear that the radial velocity
vanishes at 2z = fw. Then the boundary conditions on the walls may be

given as

|
(@

¥(ry,2) =
(2k)

r22 - r12
‘Wb ____2?____

where w, 1is the mean axial velocity, while far upstream and downstream

0
fov) _ 1fo¥
r\oz/) , r\dz/,

of any blades
=0 (25)

W(rg,z)

The prescribed velocity components far upstream w(r,-©) and v(r,—w)
and a knowledge of angular momentum change across each of the blade
rows preceding the one under consideration determine the function gl(r)

2, (x) = -~ S[R(¥) + arv(vo)] (26)

(o]
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The menner in which the remaining terms of the right-hand side are
determined depends upon whether the blade forces, the distributions of
angular momentum or total head, or the blade shapes are the given data
of the problem. It is assumed that the angular velocity w 1is always
given. Possible methods of prescribing sufficient data are:

(1) Angular momentum and leading-edge load given as functions of r
and 2z. With these date the right side of equation (22) is known and
the mathemsgtical problem is complete.

(2) Total-head distribution and leading-edge load given as functions
of r and z. If G(y) = H(¥) - o(rv),, the relation between the

total head end angular momentum, equation (13), may be introduced inmto
equation (15) to give

1=§§_LE_§(LHP_[E_9(;Q = (27)
r Y ro|o ® _|oy|w w Vg
With the linearizing approximation, this gives

Y 1 Y _r dE 1 d Fp.
R TR o e s SRl - ota)] - g

Likewise the value of F, 1is fixed according to equation (23) by pre-
scription of the leading-edge force, the angular momentum being known
in terms of the prescribed distribution of total head. Therefore the
right side is again known and the mathematical problem is complete.

(3) The distribution of blade loading given as a function of r
and z. There is a relation between the forces and the velocity com-
ponents (equation (10)) which expresses the fact that the force exerted
by the blade is normal to the relative fluid velocity past the blade.
In terms of the stream function this relation is

1'-ﬂli‘r+ (v - ar)Fy -

oY . _
T Oz F,=0

dr

H =

which, to the present approximstion of terms on the right side of equa-
tion (22), gives

Fp=-——5"To (29)
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This indicates, as has already been observed (reference 18), that within
the linearized theory the axial and tangential forces cannot be pre-
scribed independently. Furthermore, from the equation of equilibrium
in the tangential direction, equation (12), it follows that

13 0 1oy o
rdzor r Or oz

so that within the linearized approximations V¥ = ¥, and

Yo g% (vr) = rFq (30)

Upon integration, the angular momentum may be expressed as a function
of the tangential force component

I‘Fe
vr = (vr)y + — 4z
Z} Yo

the polnt 2y being that at which the quantity G(wo) is determined.

Now that the angular momentum is known, the problem of prescribed blade
forces is reduced to that of prescribed angular momentum and leading-
edge force.

Cases (1), (2), and (3), the three most usual formulations of the
inverse problem of turbomachines, are therefore equivalent under the
linearized theory.

(4) The direct problem: The blade normal n., ng, Or n, pre-

scribed as a function of r and 2. The three components of the normsal
to a blade represented by a continuous surface must satisfy the relation

Q=) 3% ) _,
dz\rng/ dr\rny)
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Furthermore, since the blade normal is glso parallel with the force
vector Fo» Fg, or F,, it follows that

fr _Ir

F, 1,
and

To _ 2o

F, ng4

Then, according to equation (29), ng/n, may be written

ng VT
AL A (31)
; vr - qrg

which establishes the angular momentum vr in terms of the independent
varisbles r and z. The value of the tangential force Fg <follows

directly from equation (30) so that F, = Fe(gg)‘ is known, Hence for

a glven distribution of blade normel the distribution of angular momentum
and the radial force may be found and the problem is in this way reduced
to that of case (1).

For the linearized direct problem, the right side of equation (22)
becomes explicitly

_ Bzar , (Bz 9 _Zr 0\T2z
ri(r,z) = wb[% et (ne S " 5y a%)ne + ragl(r) (32)

Consequently, both the inverse and direct linearized problems for axial
turbomachines may be expressed mathematically as
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P oavw B o
Jr2 T or 3,2
¥y =0 on r =71
2 _ 2
v = —wO(TE > i ) on r=r, L

=0

—t

where f(r,z) is a known function in any particular problem.

SOLUTION OF LINEARTZED PROBLEM

1
Each of the formulations of the linearized direct and inverse

23

(33)

problems for the axial turbomachine considered in the last section may

be transformed to the mathematical problem given by equations (33).

In the solution of this problem, it will be convenient to express the

result as the sum of three stream functions

¢ oy L@, ()

+ ¥

(1)

Here is the stream function associated with the through-flow

velocity prescribed far upstream of the blade rows and is independent

of the influence of the blades. The function qﬁe)(r,z) represents
the disturbance caused by the blade rows calculated according to the

simple radial equilibrium theory as discussed in references 11 to 13,

(3k)

The third stream function w(3)(r,z) represents the deviagtion from the

simple equilibrium theory caused by the finite radial acceleration.
The present analysis will be simplified by considering only a single

stationary or rotating blade row of chord c¢ with its midpoint located

in the plane

z = 0.
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Far upstream of the blade row the tangential vorticity mny(r) is

prescribed so that according to equation (3) the stream function ¥ l)(r)
is defined by the relastion

(1)
o1y = 1,(T)
or\r or /J,__.
= _éﬂizilfl (35)
or
Integration of this equation together with the boundary conditions
(1)
oV =0 et r=r
oz 2
(36)
(1) _ _
s =0 at r =1
gives directly \
1 r
W) - j wi(ay-) do (37)
1
Now if the function v'(r,z) is defined by the relation
v =y ey (38)
The problem for determining V' may be written
2 1 2 1
F . i(‘lf_L‘ r) . 3_(*_) - #(z,2) (39)
J3p2\T or\ r 3z2\T
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¥ (ry2) = ¥'(zps2)

1lf'(r,v"“:')

1 i)
TNz Z,=0c0
=0 (ko)

The homogeneous differential equation corresponding to equation (39) has

solutions of the form Ul(enr)eisnz where Ul(enr) is a linear com-

bination of Bessel functions of the first order:
Ul(enr) = Jl(snr)Yl(enrl) - Jl(enrl)Yi(erF) (h1)

The boundary condition W'(rl,z) = 0 1is therefore satisfied iden-
tically and the characteristic numbers ¢, are determined so as to
fulfill the condition W'(rz,z) = 0 and consequently satisfy the
transcendentsl equation

U (ent2) = 91 (enT2)¥1(enT2) - 1 (ent1) Yo (enre) = O (42)

If I(B,5) 1is an impulse function which has the value unity in the
interval B - g-< z<B+ g (where & 1is very small) and vanishes

elsewhere, the contribution of the inhomogeneous term f£(r,z) in an
interval B - §-< z< B+ g may be constructed from the simple solu-
tions of the homogeneous differential equations
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-

1'2 [>)
1(8,8)2(a,z) E Wy (5)rU1(€07) _eq(2-) a(as)
1

2
Ty 2envn

5]
z< B~ >

. (43)
2 al, (€,,a) T U5 (€

1(B,8)(a,2) 16 1 (5e7) e~n(2-8) 4(us)
I'l 1

2€nvn2

z>B+-6—

2

-

The numbers v, are the norms of the Bessel functions Uj (enr).

To

v 2 aU12 (ena. da

n

1

_ r22U02 (Gan) - 1'12Uo'2 (Gnrl)
> (L)

where U, = J, (enr)Yl (epry) - J1 (enrl)Yo (enr). The complete solution
of the problem is simply the sum of solutions of the type in equa-
tions (43), taken over all velues of B, that is,

o o
W'(ryz) =tj1 l.[‘ f(“:B)G(r:ZS Q)B) da dB (45)
I‘l —o

2 _ aqU, (€,a)rU (€, T
ot aop) =3 2D o

2
1 2€nVn

where

(46)
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is the Green'’s function of the problem. To investigate the nature of
this solution let #f(r,z) vanish from zZ = -» to 2z = B and let

[?(r,zZ]B denote the jump of the function f(r,z) at its point of

discontinuity 2z = B. Physically this corresponds to the infinitely
thin blade row or actuator disk. The solution of this problem is
formally given by equations (38) and (145). However, because of the
particularly simple form of the function £(r,z) it is convenient to
simplify equation (45) by partial integration. Inasmuch as f(r,z)
is discontinuous, the result consists of two parts, one arising from

the Jump [?(r,zi]B, the other from the continuous part z > B. There-
fore if the function K(r,z; a,B) is employed to dencte:

[+]

aly (en“) U (Enr) ~én|2-B|
e

K(x,2; o,p) = sga(p - 2) ) (47)
2 2
n=1 2¢, Vn
the partial integration gives
T
‘yr(r:Z) = B(G’BHB K(I‘;Zs avB) do z< B
r

|

2
f] [£(c,8)] g K(z,25 @,B) da + &(r,8)  z >
Ty

The function g(r,B) is found to be, by carrying out the process
indicated,

2 w ol
E(T)B) =2 E’(G’B):IB Z l(en@):U]_iGnr)
l n=

r 26,7V,

Inasmuch as the function X(r,z; «,B) vanishes for large values of 1z,
it is obvious that g(r,B) is the value of V'(r,z) induced at z = o
by the jump in £(r,z) at the point z = B. The complete solution
equivalent to equation (45) is simply the sum of solutions corresponding
to such jumps and in the limit becomes, as the jumps become small and
f(a,B) becomes continuous and differentiable,
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2 [|® z
¥ (z,2) = Of(asB) k(r,z; a,p) ac dp + | &lr,8) 4B (48)
I‘l . BB o .

This result may be obtained directly by partial integration of
equation (45).

The function g(r,B) is the increment of the stream function
induced at 2z = » by the change in angular momentum at 2z = B, It is
calculated most easily by noting that far downstream of the blade row
the stream function gpproaches a value which is independent of the
distance z from the center line of the blade row, and hence the term

2yt
0 g vanishes. Furthermore, both becguse the angular momentum is con-
oz

served along circular cylinders and the radial force F,. vanishes out-

side of the blade row, it is clear from equation (39) that the increment
of stream function sgtisfies the ordinary differential equation

d ldES(r’le _ dfvw -ar? 4
T & ;T}"a—ra‘”ﬂ (49)

vhere vr(r,B) represents the angular momentum at the axisl location
Zz = B. Then the sum of such increments to any axial locgtion 2z 1is

f g(r,p) dp

and is defined to be $(2)(r,z) where 2z enters merely as a param-
eter. This solution is a generalization of the simple equilibrium
theory where the pressure gradient balences the centrifugal force in
gll planes of the blade row. Clearly upon integration of equation (49)

the function W(g)(r,z) is a solution of the ordinary differential
equation

a [1 ay(®) (s, - ar® g ”

- 00
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2
together with the boundary conditions
13 (x,2) = ¥(B)(xp,2)
=0 L (51)
w(e)(r,-w) =0 »

The remaining portion of equation (48) describes the variation of the
linearized solution from the simple equilibrium solution and is given

by
I‘2 (o] a
w3 (z,2) =l; f —f(i;flx(r,z; a@,B) da dp +
1 -00

2
[£(a,B)] K(r, 25 @,p) = (52)
Tl

where the last integral accounts for the contribution of any discon-
tinuities in #£(r,z). Such discontinuities occur, for example, in the
direct problem where, because of the shape of the blades at the leading
edge, the angular momentum changes abruptly. The mathematical problem
satisfied by w(3)(r,z) is
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-
(3) (3) 2 (3)
§ﬁ__}_8¢f + 2 re(r,2)
Jz2 r or dz2
*(3)(1.1 Z) = \lf(3)(1’2 Z)
> (53)
= 11"(3)(1':"“’)
= \1"(3)(1')“’)
=0

-

The first integral in equation (52) is usually not convenient to
evaluate because the influence function is expressed as an infinite
series which does not appear to be easily summable., However, a certain
simplification, at least in numerical work, is afforded if it is noted
that for the usual ratios of hub-to-tip diameter, the values of the char-

acteristic numbers €,, where €,r| % s are sufficiently large so

that the asymptotic values of the Bessel functions, valid for large
argument, may be used. The values are (reference 2U4)

sin €,r - cos €.r
~ o yel
Jl(enr) ~
nEQT
, (54)
sin e€,r + cos €,T
Yl (enr) X - a o
:l‘tEnl' J
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end consequently the characteristic functions are

1

Ul(en;) . sin en(r - rl) (55)

“Gnq;;z

From this result it is clear that the characteristic numbers, solutions
of Uj(enrz) = 0, are simply

nx
0¥ (56)

and consequently the norm is

2 2

2~(r2—rl) 2 a—rl

Yn B —s5 sin“{nx o da
an rl 2

_ 3
= gfg___fll_ (57)
2ﬂ2n2rl

and the Green's function is the trigonometric series

© r-or @ - ry
. sin ngt\———] sin nx|—v-= -t
1‘2—1‘1 1‘2—1‘1
G(r,z; a,B) = o e
1

z-p

r2—rl

(58)

nsx

Using the complex notation

- r - I‘l a - I
A= - z- P + 1 + 1
1'2 - rl 1’2 - I‘l 1‘2 - rl
A B r - rl Q - rl
g = - + i -
1‘2 - rl 1‘2 - I‘l I'2 - l‘l
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the series (57) may be expressed more conveniently

&(r,2; a,B) = (& Rl Z %(en“" - en’“’) (59)
1

z - B

= > 0 the series may be summed directly to give
271

So long as

G(r,z; a,B) = -\r—f; R Eoge (1 - eﬂl) - logg (l - em:r]

(60)

Since the modulus of the complex variable o never vanishes, the Green's
function has a logarithmic infinity at |A| = O; that is, o =r and

z = B.
EVALUATION OF PARTICULAR EXAMPLES

When the information on head distribution, angular momentum, blade
forces, or blade shape is given for an axial turbomachine in analytical
form, there is no difficulty in finding explicit expressions for

W(l)(r) and w(g)(r,z). However, the integral of equation (52) for

’l!(3)(r,z), the deviation of the solutions from the simple equilibrium
solution, is usually quite laborious to evaluate because even in elemen-
tary cases the result appears as an infinite series of Bessel's functions
which must be summed to a reasonable accuracy. This method was employed
in computing the results given in reference 18. But since such a con-
siderable gmount of computation is required for each example, it seems
reasonable to take advantage of the universal nature of the infTluence
function K(r,z; a,B) and perform the integration of equation (52) by

a numerical procedure. There is no difficulty ebout any numerical
integration inasmuch as the function X(r,z; a,B) has only a simple
discontinuity along the line =z = B. The antisymmetric nature of

K(r,z; o,B) is shown by the contour sketch of the function in figure 6.
However, any manner of numerical evaluation requires the tabulation of
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the function K(r,z; a,B), which in turn necessitates calculation of
the characteristic values ¢, and the characteristic functions Ul(enr).

Furthermore, the eatire tebulation must be repeated for each value of

the hub-to-tip diameter ratio desired; in the present case only the
value of rq[rp = 0.6 will be treated.

The first six values of epr) are tabulated in reference 24, but
their tabulation proved to be of insufficient accuracy for the present
work. Consequently, the first 10 roots of equation (41) were deter-
mined by standard iteration methods for r1/r2 = 0.6. The results,

together with the asymptotic values (equation (56)), are given in the
following table:

n €n Asymptotic value
1 4. 758051 4, 712389
2 9. 448369 9. k2ok778
3 1k4,182998 1k4.137167
4 18.861456 18.849556
5 23.571475 23.561945
6 28, 282281 28.274334%
7 32.993535 32.27433L
8 37.705076 37.699113
9 ko, 416800 ko, 11502

10 47.12860L 47,123891

It is observed that if the series to be calculated is rapidly conver-
gent the asymptotic values of e, mey be employed for n > 10 with
sufficient accuracy. With the characteristic values known, the char-
acteristic functions Uy (e;r) were computed using the tables of

Watson (reference 25) and the British Association (reference 26) at
21 points in the range of 1 £ r/r; < 1.666667. The values of these

functions appear in table I.

Finally, the sum of the first 10 terms of the series for K(r,z; a,B)
was calculated (using punched-card methods) and the results are presented
in table II. The influence function K(r,z; a,B) has symmetry properties
which allow economy of both calculation and tagbulation. First the func-
tion depends on the gbsolute value |z - B| and consequently need be
tabulgted only for the positive difference and not for various values
of 2 and B independently. Furthermore, the function is symmetric
with respect to r and a; that is,
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K(r,z; a,B) = K(a,2; r,B) (61)

Hence it is not necessary to tebulate for all combinations of r and «.

In tsble IT are given values of the function for 0.033333 S 2-B<1.30
r
1

and 1.00 € r/ry € 1.666667 on each page for a given value of
1.00 £ a/r] < 1.666667.

With this tebular material, the first integral in equation (52) may
be evaluated by the elementary sum

21 20
of

\]f(3) (ri’zj) AL AB 1. e B—B(ap’Bq)K(ri’zj; GPJBQ) (62)

as was done in the present case, or by more nearly exact methods such
as Simpson's parabolic rule or higher-order sgpproximations. The calcu-
lations presented in the following discussion were carried out using
punched-card methods for the double summgtion. The grid used in inte-
gration, divided into elements by rj, Z35 Qps and B,, is shown in

Tlgure 7.

As gn example of the method Jjust described, two problems have been
carried out using values of the blade aspect ratio of 2 and 2/3 so that
the results are illustrated for both high and low aspect ratios.
Although not in complete agreement with usual aeronautical usage, the
aspect ratio will be used to denote the blade length divided by the
axial projection of the blade upon the meridional plane., The following
data are assumed:

(1) Uniform flow of magnitude w, far upstream; zero tangential
velocity

(2) The radial component of the leading-edge blade force vanishes

(3) The distribution of engular momentum is, if c¢ is the blade
chord,
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and is shown schematically in figure 8

The basic stream function IF(l)(r) is easily calculated since the
flow upstream is uniform and axlael., Then

“E) S @

Furthermore, the function #£(r,z) follows directly from the distribu-
tion of angular momentum:

“
f(r,z) =0 __;-_g_:.
- 2a2(z 4+ 1 - Z1\(z, 1\ lez
f(r,z) = 2a (c+2 woa)(c+2)rl -582<0
- (65)
_0g2]3 L2V _ i3 _ (1 _2\q=r z_1
o el (2 - TR (3905 oszsd
= 2e2(3 - I3[z 251
£(r,z) = 2a (h woa)I’:(!‘]_) =23 J
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Then from integration of equation (50), the stream function x]r(z)(r ,2)
mgy be writtens

on 3
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lcZg
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AR o 3oe-2f|2) -
T2 2l (2 e = | P R A . (66)
(f?.)z I:(E.)g - 1} o< 2<i
rq Ty c =2
(2 =$§@_E% Lf_czf zy_l
% Wc)1.12 2 I\k woa/ |\T1 ] r1
z5 1
c =2 J

For the evaluation of the stream function \V(3 ) by the numerical process
of equation (62), it is necessary to compute the values of S, £(r,z).

These are

-a—azf(r,z)=o —%23 -
c

gt = 2P 2o - O -3S3%0

c §
a_azf(r,Z)=1}a2(%"2‘)[%—2@__§)2_%}£l bl (67)
c

_a_f(r,z)=o ézé

o/
0N
L
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By evaluating this expression at the appropriate grid points and sub-
stituting in the summation (62), the value of 3) follows directly.

Inasmuch as the functions W(l)(r) and w(z)(r,z) may be given

anglytically and their sum w(l) + w(g) corresponds to the standard
simple equilibrium solution, the principal interest is the deviation
of the linearized solution from this simple solution which is V¥ 3
itself, Consequently the distribution of ¢(3) end particularly the

(3)
values of the axial velocity varistions which are equal to L é%———
r or
ro - rl

c

have been calculated for blade aspect ratios of 2.0 and 2/3

and for glg = 4, The change of axial velocity according to the simple

o
equilibrium theory is shown in figure 9 while the variation of the axial
velocity from that distribution given by the equilibrium theory is shown
graphically in figures 10 and 11 for the high and low aspect-ratio
values, respectively. It is assumed that the total work done by both
blaede rows is the same and as a consequence the blade row of lower aspect
ratio is less heavily loaded.

The variation of the linearized axial velocity distribution from
that given by the radial equilibrium theory is gpprecisble for the blade
of large aspect ratio as was discussed in connection with the original
calculations of this case in reference 18. The deviation is most
serious near the leading and trailing edges of the blade row where it
reaches approximgtely one-quarter of the total variation of the exial
velocity. However, for the blade of low aspect ratio, these variations
are reduced to less than half those values for the blade of large aspect
ratio, that is, to a negligible amount so far as the practical problems
are concerned.

MORE ACCURATE LINEARTZATION OF THE PROBLEM

The solution of the simple linearized turbomachine problem is quite
adequate for many problems, but that it is inadequate in providing some
particular results may be illustrated by an example. Consider an axial
turbomachine with a single blade row where the blade shape is given.

By knowing the normals to the imsginary blade surface, it is possible
to compute, 1in first approximation, the value of the right side of
equation (22) according to equation (32). When boundary conditions
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(equations (33)) are given, the problem may be solved completely. The
first term of the right-hand side of equation (32) represents the vor-
ticity generated by the interaction of the flow with the prescribed blade

row while the second term rzgl(r) represents the tangential vorticity

distribution transported from upstream of the blade row. If the distri-
bution of the axial velocity far upstream were changed although its mean
value Wy remained constant, one would expect the solution to be
changed physically for two reasons. First, the flow will be changed
directly by this varigtion of initial condition because the vorticity
transported into the field is changed. Second, the flow will be changed
because the interaction between the modified approaching flow and the
fixed blade surface will differ from the interaction between the original
flow and the blade row. Bowever, it is noted that the expression repre-
senting the tangential vorticity generated by the blade action, the
first terms on the right side of equation (32), is unchenged by modi-
fication of the initial axial velocity distribution. This effect is
clearly a result of the form chosen for the agpproximating stream func-
tion when the linearization for the direct problem was carried out; the

stream function —%; wor2 does not account for any dependence on

upstream or local flow conditions. A similar inaccuracy is also present
in the linearized solution for the various formulations of the inverse

problem.

In order to treat these problems adequately, a sharper lineariza-
tion of the fundamental differential equation (equation (20)) must be
constructed. Particularly, it is necessary to spproximete the terms

TF,

(vr - aarz)i(%) + \Ti more accurately. Again, it will be assumed that
5

the stream surfaces are practically circular cylinders so that

FW —> F.. However, instead of assuming the approximating stream func-

tion to be that of the mean flow, it will be chosen to be the stream
function corresponding to the true axial velocity. Then the variation
of the stream function is approximately

oV & -wr dr (68)

and the velocity Vg 1is agpproximately w. The vorticity-generation
term may be written as

Myr) , ¥ _w-oerd Fr
(vr - anéo gi + o - Th S (vr) + - (69)
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where w 1is the local axial velocity and is unknown. But in the direct
problem the components of the normal to the blade n., ng, and n, are

known, and, since this vector is also normal to the relative fluid
velocity, it follows as before that

un, + (v - ar)ng + wny = 0 (70)

In axial turbomachines it is usual that n,, 1is a small quantity in
comparison with ng and n,, and the radial velocity wu is inevitably

small in comparison with the axisl velocity w. Then to a very good
approximation

- n
e (72)

which is precisely the first factor in the expression of equation (69).
Similerly it is comvenient to write

vr (v - mr)W' are
—_— = | — d —
Vo w Vo Vo

Lz w
= -r = &+ = 2
Al = (72)
From the condition that the vectors n,., ng, emd n, and F,, Fy,
and F, are parallel, it follows that
n -
F.=-=<TFg (73)

g

and because of the small magnitude of F,. it seems Justifiable to write,
as before

.r—F_I:'V..w n_rri.ilﬁ_w_ ~_wrir_i.n_z (7).[.)
w ¥ "%ng " 3z v/ T 9 ng dz\ng
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The more nearly exact approximation to the expression given by equa-
tion (69) is therefore

C ) Ty Pz (P23 Pr 3)\TRg
(vr d ) oy s Vo2 ng v, ng Or ng 0z/ng
Dz 9| Pz/w
Wo;e'gr-ﬁ-(;;;- )] (15)

The first term in brackets of this expression is identical to the one

n n
used in the former approximgtion while the second term Sz 9 r 22X .
D.e or new

o

is the correction for the variation of axial velocity from uniform while
passing through the blade row.

By writing the stream function as V¥(r,z) = w(l)(r,z) + y'(r,z),

where w(l)(r) is the stream function assigned far upstream of the
blade row, it is noted that

3! (r,2)
e (76)

w(r,2z) - w(r,-=) = -

Then the more nearly exact version of equation (20) which holds within
the blade row may be written in the form

o @]ee) 2 2Ey e B e @
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where

_ Dz ar
rh(r,z) = wy|2 B e +

Bz 3 9_ul] 8
Dg Jr i Dg Wo (78)
Outside the blade row, V' satisfles the equation
1 1 1
Ca AN AN AT (79)
x2 TOr 3P

where ahead of the blade row, rq'(r) = O, and downstream of the blade
row, the tangential vorticity retains a constant value along circular
cy%}n?ers equal to that at which it left the blade row. That is, for
z £c/2,

n(x) = nlr,ef2) - 2AE 2z %)] ) (80)
z=c/2

where z = c¢/2 is the z-coordinate at which the blade row terminates.
Both inside and outside the blade row the boundary conditions are

w‘(ri,z) = v'(rg,z)

¥ (I‘,-oo)

- ;@f;)
T\or ©

=0 (81)




4o NACA TN 261k4

n
Because of the function a§ (r,z) in the first term of the left side

of equation (77), which depends upon the particular blade shape assigned
for each problem, the equation is mathematically difficult to solve
except under quite restrictive assumptions on the blade shape. Further-
more, even if quite general solutions to this equation could be obtained,
there still remains the problem of matching that solution with those.
holding outside the blade row; each solution would have a different set
of characteristic functions for the radial direction. Hence it is
appropriate to seek an approximate solution.

Tt is possible to split the function V'(r,z) into two parts as
before, the First being the simple radial equilibrium solution and the
second representing the deviation from this solution caused by the
finite radial acceleration. The equation satisfied by the simple radial
equilibrium solution is obtained from equation (77) by deleting the

32y
dz°
this solution, it follows by rearrangement of the terms that

term and treating 2z as a parameter. Then, if w(z)(r,z) is

2
FrGebee) - ZeE) Farwen o

with the boundary conditions

v(@(z,2) = (& 2,2

!
<
R
\e

1

|

The gbove solution holds within the blade row; w(z)(r,z) vanishes
upstream of the blade row and downstream of the blade row retains the
value it had at the trailing edge of the blade row. :The function

w(a)(r,z) therefore yields a solution at 2z = «, but, in contrast with
the situation in the previous treatment, this is not the correct value
of the stream function there because the correct flow, and hence tan-
gential vorticity, at the blade trailing edge is not known. Therefore
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a function 11;( 3) which would complete the solution of equation (77D
will not, in general, vanlsh at 2z = o. Consequently the solution

(3) 2 " d 1%z 3(0z a"'l(z)
Y142/ (r,2) = K(r,z; a,B) Y h(a,B) - oy 5 S do. dB
r o ’

(83)

is only an approximation, although a quite reasongble one if the aspect
ratio is not too large. Approximations of better accuracy may be

obtained by employing an iteration process consisting of the sequence
of problems

r (2) -17

a(1 d2 )_ 1% d1% of (2) (3)

a;<; S A E[? =n'® v )

3 _ [z 3 ) 1mdfm 3@ |
‘] Vo K(r,z; a,B) S5 {- S 5y 3 n: aa(\lf +
1 -0
: L(Bh)

r 2

5
~~
o
: e
o
8

=

3

3

8

w

L —_

g/o/
( t ’
elr
& |F
8/0/
& [
8/01
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The accuracy of the solution V = W(l) + wn(z) + Wn(3) will probably

be increased by continued iteration. The work involved in carrying
out such an iteration is considersble when done anglytically but
should not be excessive when a punched-card machine is used. However,
the problem meriting more computation than is involved in the solution

¥ s W(l) + ¢2(2) + ¢2(3) is a most exceptional one. Usually the
simpler analysis described in the next section will be adequate.

SIMPLIFIED APPROXTMATION TO LINEARIZED SOLUTION

The process described for the solution of the linearized problem
in turbomachine theory consists of superposing the mean axial velocity,
the additional velocities due to the presence of the blade rows which
would exist if the radial acceleration were neglected, and finally the
correction of this simple equilibrium solution for the effect of radial
acceleration. The first two parts are extremely easy to solve, the
second requiring only a simple quadrature. The difficulties, when
they are apprecisble, arise in connection with the third part and in
particular with the evaluation of an integral

2
117’(3)(1"2) =f r g—f K(r,z; a,B) da 4B +
B
1 -0

f‘z Z E(m,z):lzi K(r,z; a,z1) do (85)
1

where the function K(t,z; «,B) is given by equation (47). As shown
in figure 6, the function K(r,z; a,B) has a discontinuity along the
line z = B vwhich is of considerable physical interest.

Suppose, for the moment, that the blade row in guestion is the
only one in the field and is replaced by a discontinuity or "actuator
disk" which provides the same change in angular momentum as did the
entire blade row it replaced. Then equation (85) is reduced to the
single integral
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W(3)(r z) = fz £ (o zl)K(r 25 a,2;) do (86)
) }) 25 @24
Tl

The complete solution for the stream function is continuous at the
actuator. The solution w(z)(r,z), however, is discontinuous across

the actuator disk and consequently the discontinuity in ¢(3)(r,z) is
of proper mggnitude and sign to make the sum continuous. Therefore

W(3)(r:21ﬁ) - W(3)(r,zl—) = -[;(2)(r;w) - W(2)(r:- i] (87)

Furthermore the function K(r,z; a,B) 1is antisymmetric in z - B so
that it also follows that

()1 o (2)r .
¢(3) (r,zl+) = “l’(s)(r;zl’) = o) —;r (r,-=)

(88)

that is, the discontinuity in \k(3)(r,z) 18 equal to the change in
stream function between stations fer downstream and upstream, respec-

tively, and is antisymmetric. Now, by writing the function K(r,z; «,B)
in detail,

T2
*(3)(r’z) = sgn(p - z) Zf f(a’Zl)GUl(Gn@)rUl(enr) e-enl.Z_Bl “
T3

- 2€n27n2
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it follows from the reasoning sbove that

%'(3) (r,zl+) = —\]f(3) (r,zl-)

2 alU;( €,) 04| €1
sgn(p - z) Z jﬁ £(a,z) l( P)z li n) da,
ry 2En "n

@)y @
- ¥ (r: ) éw (r: ) (89)

inasmuch as all exponentigl functions become unity. The stream functions

q;(2)(r,oo) and W2)(r,~») are known from the previous calculations and
consequently equation (89) expresses the sum of the infinite series of
integrals in a very simple form which it 1s convenient to use in the
following approximgtion. In the actual solution, the various Bessel
components of this series vary as different exponential functions of

-6, |2
z and e nlzl , where €5, increases approximately in proportion to n

and the seriles is rapidly convergent for = 74 0. For the approximation,
it will be assumed that a sufficiently accurate result msay. be achieved
by determining a parameter A' such that all Bessel components vary

-\ |z]
with the factor e ; that 1is,

Z frz f(a,B) aUl(ena)rUl(enr) e—EIl'Z-BI do =
v e 2, 2

€n 7n

: 2 - aUqleqa) rUq{ €7 At (e
f £(a,B) 1( n) l( n) dole A [2-Bl (90)
ry 2€n27n2

If an appropriate value of A' may be found, then, from equations (89)
and (90):
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1];(2)(1‘,00) - W(Q)(r:"m) e-)"' Iz-Bl
2

(91)

It remains only to provide a consistent manner of finding the appro-
prigte value of the exponent A!'. It will be convenlent to write the
exponent A'|z - B] in the form

Mlz - Bl =% —=
2 - T1

zZ - Bl
c

_A|z-8
=2 | (92)

C

where c¢ 1is the projected blade chord and the symbol R is used to
denote the projected aspect ratio of the blade. Now if the tangential
vorticity computed from this approximate stream function were constant
along concentric cylinders, it would be a true solution to the linearized
problem. This property suggests that a possible method for determining
A 1is to choose such a value of A +that the mean square variation of

the tangential vorticity is a minimm along a streamline. If the vor-
ticity computed from the stream function of equation (91) is denoted

T(r,z), the integral of the square deviation of l-g-n may be written
r pA

fa [ —\2
j f (% %%) r ar(z - 8) dz (93)
r1 Jz=p

where, because of the antisymmetry, the integral need be extended only
over the volume downstream of the discontinuity. Because the exponential
approximation is inherently poor in the neighborhood of the discontinuity
and improves at great distances from the actuator disk, the errors have
been weighted 80 as to take more account of those far awsy from the blade
row and less account of those very near the.actuator disk. Downstream

of the discontinuity the variable part of the approximate stream func-
tion is

$(3) = rk(r)e_(X/R)lz'B/cl
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where

2y (@
k(r) — “lf (r;°°) Ilf (I‘, ) (9)_’.)

Now by calculating the tangential vorticity, evaluating the integral (93),
and equating its A varigtion to zero it follows that

2 2
(x")2r ar + i &
5 1 T1
A = (95)

r
2 2
(T——éi-—-> r dr
Ts - T
Ty 2 1

When, for exsmple, the angular momentum change across the actuator disk

is prescribed to be of the form xv ~ r2, the values of A may easily
be written down explicitly

) ey -

] 1|fro AN rp\P 5 P e
A=) - ][(—) o) - ] SRS &

The resulting values of A are shown in figure 12 for various ratios
of hub dismeter totlp diemeter.l It is to be noted in particular that
for this distribution of angular momentum, the values of A are very
nearly equal to =x. Thus the first characteristic number €7 is of
dominating importance in determining the rate of formation of the
velocity profile. The terms having large values of € decay very
rapidly and soon disappear in the numerical result.

lThe value of A for rzlrl = 5/3 was given incorrectly in refer-
ence 18. This error was pointed out by Dr. R. H. Sabersky.
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When using the exponential approximstion, it is often convenient
to use the axial velocities directly inasmuch as they are the data of
principal interest. Hence, according to equation (91),

W3 (z.2) = sgalp - Z)<w(2>(r,w> - w(g)(r,—w)>e-(x/R)I(z-B/c)I (o7

2

where w(e)(r,-w) and w(2)(r,oo) are the axial velocity distributions
given far upstream and downstream, respectively, by the simple radial
equilibrium theory.

The exsmple worked out in detall may be solved approximately by
the method just described. From the results of equation (66) it
follows by differentiation that

W (r,w) =0

2 2
W(z)(r,oo) = woa2 -3—9-E. + (r—e-) - 2(1)]
32 1 1

Then if the blade is replaced by a discontinulty at B = O the resulting
exponentlial gpproximation is

> (98)

W,

W& r1 i !

(3)
D) s - 2) z 2(1)2 B (féﬂe-(l/R)(z/c) (99)

The velocity w(3)(r,z) represents, in this case, the deviation of the
true axial velocity from the equilibrium solution corresponding to the
tangential velocity discontinuity at z = O,

The simplicity of the exponential approximaetion allows a solution
for the axisgl velocity distribution in a multistage turbomachine. Con-
sider the flow in a turbomachine containing N blade rows (fig. 13)
the first of which has its center of loading at =z = B, the second
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at 2z = Bp, and the kth at 2z = By. Also let the angular momentum
upstream of the first blade row be 1rvy, that between the first and
second be rvp, and that between the kth and the (k + 1)th be rvi,j.
Assuming the axial velocity far upstream to be uniform and of magni-

tude w,, the stream function W(l)(r) and the functions Wk(z)(r)

may be obtained from equations (35) and (50), respectively. Or, con-
sidering the axial velocity distribution directly, the simple-
equilibrium sxial velocity distribution satisfies the first-order
differential equation

d (Vk+1 : Wk) _ (vk - o a rvk) i, (vk+1 _ %r) a (rvk”l\ (100)

ar Vo Vo /r dr\wo Vo ar o /

where Wo = wy. Thus the simple radial equilibrium solution for the
region between the (k - 1)th and the kth blade rows is

k-1
w(Tr) = w + Wy, - W ) (101)
k 1 };: ( + n

that is, the sum of the increments of axial velocity caused by each of
the blade rows occurring before the section under consideration. The
axial velocity distribution of equation (101) is very nearly that which
would hold if the blade rows were very widely spaced. When the blades
are spaced more closely, as they are in any practical instance, none

of these changes indicated in equation (101) is quite complete and
similarly the changes which are gbout to occur farther downstream begin
to make themselyes felt. These influences are accounted for by the

third component of the stream function $(3)(r,z) or its equivalent
in terms of the axial velocity variation. The increment associated
with the kth blade row follows from equation (97) and becomes

(2) _ 4 (2)

2

Wi+l

Wk(3)(1°)z) = Sgn(Bk - Z) e- (lk/Rk)l(z-Bk)lckl /(102)
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where Ay, Ry, and ¢ are the values of these parameters appropriate

to the kth blade row. Therefore, the velocity at 2z differs from wk

by an amount equal to the sum of the variations caused by each of the
blade rows.

e SN o A Z)(wmﬁ” - wn<2>)e-(xnlan)|(z-sn)/cﬂ|

W 2 W
o et o

(103)
This result simplifies when all blade rows have the same chord, length,
and spacing, and when a mean value of A 1is employed. If d is the

blade spacing and the first blade row is assumed to be located at the
origin, then B = (k - 1) & and

- N (2) _ . (2)\ _X|z=(n-1)a
3 sea(e - o) 2 A (10%)

n=1 ©

For example, consider an axial turbomachine having uniform axial velocity
VW, and zero tangential velocity far upstream and consisting of blade

rows imparting the following changes of angular momentum:

(1) Stationary entrance guide vanes which impart a tangential

Yo - V
velocity corresponding to "solid body" rotation: 2 1. ay il
Wo 2

(2) Rotating blade row with angular velocity  which adds uniform
energy over the cross section and hence imparts a tangential velocity

v - V by
change corresponding to a potential vortex: K M./ ap ??
¥o
(3) Alternate stationary blade rows and rotating blade rows of
angular velocity o which impart, respectively, changes of tangential

1'2 1‘2
velocity equal to -2ap = and 2a2-;:
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The corresponding changes of axial velocity follow from equation (100)

-
Wl = WO
vo - _at(m\?l fr2f (x f

L 2 \r2 r1 ry
w3 - Wo ro 2 L1 r . (105)

Yo ajéz 1\2 8e ) ~°° Oge 7

_ re)
L n 1 rp\2 2
ol o (3 e ]
- ()

The axial velocity distribution is then easily computed from egqua-
tion (104). It is particularly interesting to observe the nature of
the flow through the first few stages of the turbomachine, This is
done most easily by studying the shape of the stream surface which lies
at the middle of the annulus far upstream of the first blade row. To
determine this shape the radigl velocity distribution is required,
which, according to the continuity equation (2) and equations (10k)

and (105), is

z_(nc-l)al

(106)

itl;:

N
g Z (r)e ¥
1

where the functions kn(r) are, in general,

t/ry o (2) _ . (2)
(x) = 3 = Yo = (Fz - rl) d(;i) won
1
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and in the present example have the specific values

2
k(r):il_z. rl ﬂl__l_‘-z 3.2_
1 b ro-r) r ro
2
@ e
-2l
T2 rp-r 2 € \r T
> lt_ ] (;;_) 1 1 S (108)
T - 2% i rp\2 r\2
— - n — -— —
kn(I‘) - ( l) 31&2 ro - I ry 2 loge (I‘l) loge (rl)
1- {5
For the values ;i = 0.6, R =2.0, %? = k0, a; = 0.8, and ap = 0.1,

this stream surface is shown in Ffigure 14 for the portion of the flow
near the first few blade rows. From this result it is seen that the
periodic flow is established very quickly, essentially by the time the
fourth blade row is reached. The transient stagte resulting from the
inlet vanes and the first rotor is of very short duration, partly
because the distortion caused by the rotor is of the same sense as that
caused by the inlet vanes and assists in completing rapidly the dis-
tortion due to the guide vanes. This is an example of "negative
interference" between adjacent blade rows. Farther downstream, however,
where the periodic flow is being established the interference of adja-
cent blade rows is positive, with the result that the distortion which
would be caused by one of the blade rows existing alone is never
realized. Actually without this interference the distortion caused by
each of the blade rows far downstreasm would be nearly as great as that
dve to the inlet vanes.

A quantitative estimate of this interference may be achieved by
considering the flow through a stage far from the inlet so that it is
effectively both preceded and followed by an infinite number of identical
stages. A problem similar to, but more general than, this has been
treated in great detail by Wu and Wolfenstein (reference 27). By trans-
lating the origin of coordinates to the plane of the kth blade row
according to z = (k - 1) 4 + z', equation (104) becomes
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n R c
o 2 (109)

If the stage is so deebly imbedded that the effect of the first two
blade rows is suppressed, then, according to equation (105),

Furthermore from equation (101) the velocity distribution W, is
periodic of period 2k and may be expressed in the form

w o—
k_w 11 Aw
w—o-a;”(‘l) 3w,

where ﬁow is the mean velocity distribution about which the flow

fluctuates. Then if in equation (109) the index of the first summation
is transformed to J =k - 1 - n and that of the second summation to
j =n - k, equation (109) may be written

e b

0
A z'+g>
W—ﬁ_(l)k-llAwl_eR(C Z(-l),je
k-2

Yo 2 Wy

44 &.E_.N A jJd
c RcE 1)9eR
0

(110)
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Now for the deeply imbedded stage k - 2 — » and N - kX —>w; the

occurrence of ( —1)]"l preceding the whole expression implies merely
a difference of sign for even or odd blade rows, that is, for rotors

or stators. Then each of the summations is a geometric series which

gives the result

~

A z' + %— d
W -7 k-1 1 aw cosh g\—¢
= (-1) S—t- (111)
Yo 0 cosh%gg

vhich is valid in the range -4 £ z' £ 0, that is, between the (k - 1)th
and kth blade rows. From this result it is clear that the distortion
from the mean distribution ¥ vanishes at the plane of each blade row
and reaches a maximm midway between the two blade rows; that is,

z! = - % d. If the blede rows were separated by a great distance, the

variation of the axial velocity profile from the mean would be % %E

o]
at this point. However, because of the mutual interference this dis-
tortion is reduced by a factor

1- 1 (112)

cosh H{—S—
Io - Ij

For the value of A = x, the distortion factor is shown in figure 15 in
o - T

terms of the blade-spacing ratio § = —z—d—i. When the turbomachine

blades have a very low blade-spacing ratio, that is, of the order unity,

practically the full change of velocity profile tskes place and for

S = 2.0 the varigtion i1s still significant. On the other hand for

blade-spacing ratios of 3.0 or over, the distortion factor has decreased

t0 such a low value that the periodic changes of the axial velocity

profile are negligible.

One great advantage of the exponential approximation is the ease
with which it may be employed in the treatment of the direct problem.
In the direct problem, the flow is to be calculated where the blade
shape is glven, using as a boundary condition the fact that the flow
relative to the blade must be tangential to the blade surface, This
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condition is difficult to satisfy, even when the exponential approxi-
mation is employed, and requires the solution of an integral equation
or a related iteration procedure. However, in view of the determining
nature of the condition at the blade trailing edge, an adequate spproxi-
mation will be obtained by relexing the condition that the flow be
tangential to the given surface at all points, but satisfying the con-
dition of tangency only at the trailing edge of the blade row. Con-
sequently it is necessary to prescribe only the flow conditions upstream
of a blade row, its trailing-edge-angle distribution, and its angular
velocity.

It ¢ is the angle made by the trailing edge with a plane normsal
to the axis, then, according to the approximation of equation (71),

- F

wp

tan @ = (113)

where the subscript T denotes conditions at the trailing edge of the
blade row. If the small difference between the tangential velocity

et the trailing edge and that far downstream is neglected, then

Vp & Vo. Furthermore, if the distance from the center of blade loading

to the trailing edge is 1, the relation between the exial velocity at
the trailing edge and that far downstresm may be calculated from the
exponentigl approximation

—_ - — e

-\l
Wpo W2\ W2 -¥"11 Re
Vo Wy Vo 2

or

-Al
W W Wo - W -
i:.i.,.__e___]_-(l_ieﬁc) (11k)
Vo Wg Vo 2
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According to the information obtgined in studying the more accurate
linearized solution, the equation governing the process shall be taken
as

Vo

W - W v, - ar rv Vo - 4
_g;( 2 1) -1 a ™M Y2 (115)

d
dar Vo wp Trdrw Wo T dr w,

where the influence of axial velocity variation is explicit in the
denominator, instead of the corresponding equation (100) (k = 1)
which suffices for the inverse problem, The problem then, using the
relations (113) and (114), is to reduce equation (115) to one which
expresses the downstream axial velocity wp 1n terms of the blade

speed, blade discharge angle, and the known inlet condition. The
Vo - ar

W2

term can be written with good approximstion

Vo - ar 'VT—OIPVT

2

Wep
Wy + (w2 - wi)

= tan @

22

1 w1

Wi W ~ W
tan,,;w_T(__e__;)

~ ten ¢ 2Ly - 22" 1
L1 Yo

Then, using equetion (11k4),

~Al
Vo - AX WA - W e
2 & tem ¢(é S eRc‘) (116)
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Similarly the term

rv Vo - X
2 pllel T, e
¥o Wo w2

may be gpproximated by writing

V2-(In'~vT-(DI'WT

~

Vo wp Vg

-Al
an gl 2221 ) an

Vo - ar v
2 d / 2) of equation (115) becomes

Consequently the term
™ ¥ Wo r dr\wo

-\l
Vo - ar Tv. Vo -~ Wy =— W
2 d 2ztan¢l—}-—2 leI“:)d rta.n¢—l+
Wo T dr wg 2 wo r dr Vo
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Wo - W
Which can be simplified by neglecting second-order terms in %
o]

and its derivatives

-Al
1 Rec Wp - W
Inasmuch as both 5 € and ——— are usually small compared with
o
unity, the second parenthesis of the last term is » With sufficient
accuracy,

1'_M2-w
Pl 2
2 Wg

The principal relation, equation (115), may thus be written in good
approximgtion

dr Yo 2 Vo

( -ll)

Al 1 Re

—_— Wo - W 1-5 Vo - W

1+ (l - %eRc ) tan?g d ( 2 l) + 2 i(1'21:151::12925) 21,
op dr

W vy - ar
tan § o (_ltan¢+£n:- 1 df”l)=o (118)
r dr \w, Vo w1 rd.r\wo
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This linear first-order differential equation can be solved quite gen-
erally when blade discharge angles, blade angulaer velocities, and
upstream conditions are given. The single boundary condition required
is the continuity relation which may be written as

2 o -
L[u‘ EE_E,El rdr =0 (119)
o
Tl

For example, if the flow far upstream is uniform and has no tangential
component, and the blade discharge angles are given by tan ¢ = gé,

where 7 1is a constant, the differential equation (equation (118)) may
be rewritten in the dimensionless form

-Al

—_— 2wy - w ar
___d_l+72( _}_eRC)(L) (2 l)+ d 7(7-__2.)(.2_)2:0
d(r/rg) 2 L2 Vo d(r/re) Wo /\T2
This equation integrates directly to glve

»Yy)
oy L Re J(=X|¥a— M1 _ [, - ). (=¥
1+7 (1 5 € )(rz e v4 v = (120)

where C is a constant of integration. By applying the continuity con-
dition (equation (119)) it follows that

(&) «&)

ea 30 7 -1 e

’ &) (&)

ry/rp 1+ 72(1 -3 eﬁiﬁ)(.rl.)z
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so that the constant of integration is

2
I =
> 1

C = -
AL -Al
l+721-%—eRC l+721-%e'IT

~Al 5
r

l+7’21-%eRc (1‘-_];)
2

The logarithmic term in this expression may be written gpproximstely

logg

- @ -3 &)
]
- % - (5% L 1+721-'§e g

-log 1l—
-2 5)
2l; - L
g 1+ 72\l 2eR"" |
N\ f
AL %)
7'21-%eRc \2 1+721-%eRC'
L- @) - -
EEIY B By,
1*’2(1"%BR°) J 72(-%6“) :

A2

-Al To
1+ 92|1 - & eRe

1
2
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1 -Al r\2

A1) @
=Al
1+72<1—-é—eRc)

is small compared with unity. Then the constant of integration is given
quite accurately by the very simple expression

o= -4 - (3] e

which is remarksble for the fact that it depends only upon the ratio of
inner to outer blade radii. The downstream velocity distribution is

consequently
wr 2 2
.z(}..__g)[i . (E;) B} 2(1;)
Wo -~ Wy 2 Yo ro o
-Al

]

and is shown in figure 16 for a range of values of

when

(122)

Vo

%. It is to be

| >

noted that for low values of % the distortion of axial velocity
ZZc
is notably reduced over that for large values of " The value of

_:L_léc_: may be changed through modification of either the blade aspect

ratio R or the blade spacing 1/c > 1. With this result, it is pos-
sible to compute the performance of the turbomachine, for, according
to equation (114), the axial velocity at the trailing edge is

w  H-E) G- 3]

— =1+

Vo :X_l'l
b3 5 - gy
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Consequently, for the prescribed trailing-edge angles and equation (113),

~

v, | 3D 6]

:ﬁl -1
b er

The distribution of total head coefficient may then be written

-~

r
To

v

~ -

uxr r1\2
Wrvp r Vo 2 Wo rs To
—_—= 1+ >

L

(123)
where the quantity wg/ars is usually known as the flow coefficient.
Clearly the value and sign of wb/hmg governs whether the local opera-
tion (for a given value of r/rg) corresponds to a turbine or a com-

pressor; that is, whether the head coefficient is negative or positive.
Of particular interest to the present investigation is the variation in
the distribution of head coefficient caused by the three-dimensional
flow process. This effect is found by comparing the head-coefficient
distribution found in this way with that obtained under the equilibrium
theory; that is, when 1 —> w. This difference can be written as

s B & e

(V) [
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The radial distribution of this variation is shown in figure 17 for an
appropriate range of values of XZ/Rc. The difference decreases, of
course, as !/Rc —> @ because then the simple equilibrium solution is
approached. Also of interest is the fact that as 1/Rc — o the
radial variation of the enthalpy distribution decreases. These results
are peculiar to the distribution of trailing-edge angle which wes chosen
for the problem.

The exponential approximation may also be employed to discuss the
operation of turbomachines at flow coefficients other than those for
which it was designed; this is usually referred to as "off-design"
operation. TFor this problem it is assumed that the detailed flow is
known for the design operation and the variation of the flow from this
nown distribution is caleulated for small changes of the flow
coefficient. s

Let 8&(r) indicate the difference between a solution of equa-
tion (118) for the off-design operation and one for the design condi-
tion; that is,

3(r) = - % (125)

where the starred quantities are those corresponding to the design con-
ditions. Then, according to equation (118),

-Al
223 (1 - % eRT>
1+ (1 - % eRC ) tan®g %E(rﬂ + ~ a% r2tan@|s(r) =

W wq* ¥
_Mir(_l__]-_*)tm¢+g_w—§+p(r) (126)
r dr Wo Vo Yo W¥o

where

(p) = [TL2OF aevy  T¥ - o gfrvg”
r) = | —— —[=) - —
P Wy dr(wz) wp* ar \wo*
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This equation may be integrated in any particular case when the com-
plete upstream conditions and flow coefficients are given for both the
design and off-design conditions. The boundary condition is simply

ro
8(r)r dr = 0 (127)
ry

When the term on the right side of equation (126) vanishes, the solution
becomes &(r) = O which is logical inasmuch as the terms on the right
side represent deviations from the design condition. Furthermore the

an W wq¥ an
term p(r) - tan ¢ 4 2. ) tan ) tan § represents the influence
r dr Yo  Wo¥ r

of the variation and nonuniformity of the initial flow far upstream of
the blade row., When the upstream velocity distribution is unchanged
and the tangential velocity vanishes, this term itself vanishes., On
the other hand the remaining term is

talrlgi_él_r__wxr\=2tan ¢/g_ah~) (128)

ar\wo  wo¥ T \Wo V¥

which represents the effect of the variation of local flow coefficient.
This term exhibits clearly the possibility of similar operating condi-
tions; any change in mean axial velocity (flow quantity) and blade
angular velocity which leaves their ratio unchanged produces no varia-
tion in the distribution of axial velocity. As before, the trailing-
edge esngle is known; the tangential velocity (and therefore the total-
head coefficient) leaving the blade row under the new operating condi-
tions may be found directly once the new distribution of axial velocity
is known.

To illustrate this analysis it is convenient to employ the same
example used in the direct problem. Consider a single moving blade row

T
with trailing-edge angles such that tan ¢ =7 . with design axial
2

and blade angular velocities w,* and ¥, respectively. Iet the
tangential velocity vanish far upstream of the blade row and the axial
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velocity be uniform at the same point. Then p(r) = O and equa-
tion (126) becomes

~Al
a 1 Re )ofr\e ar,  ar
- = eRe ) 2L = oy I\ —= _ 2
—x 1+ ( 5 % (rz) 8(r) 27(1-2)(1,:0 Wo*) (129)

Integrating as before, the solution for &(r) is simply

(130)

Clearly the distortion of the axial velocity profile caused by off-design
operation decreases as hZ/Rc increases, for example, as the aspect ratio
increases and other geometry remains fixed. The change of axial velocity
distribution for a unit change of wrg/wo is shown for the above example

~Al

—

in figure 18 using values of 72\l - L eRe ) o 0.5, 1.0, and 2.0. It is
2

seen that, for the blade shape used, the flow distortion may be consider-
ably less when, for example, the blade aspect ratio is low than when it
is high, the value of 1/c remaining fixed.

LIWEARTZED PROBLEM FOR CONICAL TURBOMACHINE

The flow through an axial turbomachine is not the only physical
situation which may be treated through linearizagtion of the right side
of equation (20). This may be done, in principle, for any axially
symmetric problem where the general behavior of the stream surface may
be given in advance. When, for example, the walls of the turbomachine
consist of two coaxial cones with a common vertex (fig. 19), equa-
tion (20) describes the situation adequately and the problem may be
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linearized by assuming, on the right side of equation (20), that the
stream surface consists of conical surfaces.

Po discuss the flow In detail, it is convenient to transform equa-
tion (20) into spherical polar coordinates R, 6, and & (see fig. 19)
with corresponding velocity components U, v, and W and vorticity
components =, 1, and Z. The components 6, v, and 1 are given
the same symbols as for the cylindrical problem since they are, in
fact, the same quantities. The coordinate transformation is simply

r=Rsin 0 = R(L - p2
(131)
Z =R cos & = Ru
where u = cos §. Then equation (17) becomes
2 32
3%y T R‘ll _ 22 K“’R‘ll ~ 2 v)—a—(vR\Il _ u2) .
3R2  R® ¥ ov
M o 2)]
— = —= - —[Rv-\{1 - 132
T, Ty oy p (132)
Here the stream function has the properties U = 1 éi—
R sin @ Rog

-1 oV

W ——— —,
R sin & OR
sidering Ub(R), the basic flow corresponding to a source or sink at

the origin R = 0, to be only slightly perturbed by the action of the
blade row. Then on the right side of equation (132), choose

The right side of this equation is linearized by con-

@y =z Uy(R)R sin ¢ d = -Uy(R)R du
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and consequently the linearized expression becomes

W 1- u2 3y - aR\L - pB) 3
Ll-w o <v UO(\R) a )&.(vaﬁ__pé%

dR? RS 2

TR
T 5 el ) (33)

If the radial velocity Uy(R) has a value of Uy(R) at a reference
radius R,, it follows that, at any other radius,

Uo(R) = Uo(Ro) (%)2

or
Yo = Uo(B)Ro™ (1 - 1) (13%)

The boundary conditions to be satisfied by the stream function V¥ are
those of vanishing tangential derivative at the inner and outer cone
angles, say, pj and up, vanishing disturbances in the p-direction
both for upstream and downstream, and certain conditions at the blade
depending upon whether the blade shgpe, blade loading, or angular
momentum distribution is prescribed. These conditions may be given
anaglytically as they were for the axial turbomachine: At the inner
and outer boundaries,

il
@)

¥(R,11)

(135)

¥(Rot2) = Uo(Ro)RoP(ky - mp)
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As R—> 0 and R —> » the flow becomes conical, therefore

lim [oV/oV lim
R— 0(3 RB(D) R— m(BR/Ra¢) (136)

The values of H, and v, are assumed to be known at some station

upstream of the blade row, and the angular velocity of the blade is
given. Concerning the conditions prescribed at the blade row, only
the case where the angular momentum is prescribed will be treated. The
extension to the other cases may be effected in a manner analogous to
that used for the axial turbomachine.

The mathemgtical problem to be considered is therefore the partial
differential equation

Be\lf 1 - p2 %y OBy ) 2
R au2—f(R’”)+[5T+55(m°\h'”>ﬁ'”

where

£(R,u) = \|l ) L lel - E‘G’qu - ”2) * RFP) (137)

\V(R,p])

¥(Bom) = Up(Ro)RoZ (11 - h)

= 02 25 8
R —> O\JR/RO® R —) ©\OR/RO0®

=0
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The functions v(R,p), Ho(p), and vgy(p) are given, It is con-
venient to choose the stream function V¢ to be the sum of two partial
stream functions

y = ¢(1) 4 y(2) (138)

Where \l:(l) corresponds to the flow which would exist for the same
initial and boundary conditions, but with the blade removed. The func-

tion \1;(2) is then the perturbation stream function corresponding to
the effect of the blade row on the U and W velocity components.

3y(1) (1)
Clearly SR =0 8o that is found by a simple quadrature,

for, according to relations (137),

-

1 - p2 32(2)  OH, 3 5
FELE ) o

which with the conditions

¥ () =0

\V( 1) (Rsmp) =1, (Ro) Ro? (b1 - itp)

determines qf(l)(R,p) completely. Then the streem function x]r(e) satis-
fles the homogeneous problem

(2) (2)
32‘; -+ 1 ;2“2 a%; — = 2(R,u) (1%0)
(I
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- v® (0,

= ¢(2)(w:u)

Solutions of the corresponding homogeneous equation may be written in
ni+1 ~-n4
the forms R Hhi(“) and R Hni(p) where Hhi(u) are linear

combinations of associated Legendre functions (reference 28) of order 1,
degree ny, and both first and second kinds.

Bny () = Po; 2 ()0n, P(uy) - oy P)an, P (1)

This clearly venishes identically when p = pq. The characteristic

functions of the problem are thus determined by finding those values of
the degree ny such that

Hy,(12) Pni(l)(PZ)Qni(l)(ul) - Pni(l)(lll)Qni(l)(PQ)

=0 (1k2)

The resulting infinite set of values n; are the characteristic numbers

which range between -« and . However, it is possible to restrict
the necessary values of nj through noting (reference 29) that

a6 = By, )
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(1) - sin (ni + 1):1 (1) T COS njyn
Lng-1 sin (ng - 1)« %y ) o n; - 1) oy

(1) (y)

and therefore the value of H_ni_l(p.) is simply

sin (ni+ l):t (1)
sin (ni— ):t Hog (n

H_ni_l( P)

Consequently it is not necessary to consider values of nij for which
nj < -1. The corresponding set of characteristic functions Hp,(p)

is complete and possesses orthogonality properties common to functions
satisfying & Sturm-Liouville problem.

A solution to the inhomogeneous partial differential equation
ni+l -n
(equation 140) from solutions R 1 Hpi(n) and R iHni(u) of the

homogeneous equation follows: If I(a,e) is impulse function with
properties

€ 6
I €) =1 - 2<R< + =
(ay€) a-3 a+ 3

li
(@)

I(a,€) OS.RS.OL—%;R>CL+§2-

the contribution to the solution of the function #£(R,u) in the range
a—§<R<cc+g- may be found to be

Ko Z“ (B)Ep, (n) +1
I(a,€)f(a,p) Hni2 ! 1- Ll2 Rn dBe Rca
51 — vn;Z(eny +2) Y1 - 8% oM

> (143)

Ha Z" Bn; (B)En. () [—%
i ni K _ 2 R—ni
I(a,e)f(a,pn) l1-u dBe R>a

my Vag2(eay + 2) \1 - 2 o] J
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3

where the choice of the solutions is determined by the boundary condi-

tions at R =0 and R = . The numbers

Hp,(n) functions

H1

Vn = Hp

K2

Vn12

2
2(8) ap

are norms of the

(1kk)

The complete solution to the problem is simply the sum of the solutions
£(R,u) # 0. Con-

of the type (143) for each element of the range where

sequently if the function L(R,p; a,B) is defined

o .

: ) Z Hp; (B)Hny(u)
L(R,p; «yB) =
T vn;*(2ng + 1) \

00

Hp. (B)Hp, (1)
L(R,u; @,B) = }j niz i \
" Vny (Eni + l)

The complete solution is

-
1 - l—l2 Rni+l
1 - 32 o

1- 2 RO
1- g2 gt

R<a

(2) i
v (m) = £(c, B)L(Ry1; a,B) do dp
0 K1

so long as the function f(a,B) 1s integrable.

- (15)

(1k6)

Although this procedure is formally quite simple for any distri-
bution of angular momentum (or for any other manner of prescribing
information at the blade row) the details of the calculations involving

the lLegendre functions are somewhat cumbersome.
principally in the lack of extensive tabulations.

The difficulties lie
Therefore it is

appropriate, and usually sufficiently accurate, to use an asymptotic
expression for the functions Hhi(p). This representation is
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o o1 o+ o - o)

@in ¢ sin ¢y

where @7 is the semivertex angle of the root come. Consequently the
values of nj are determined so that Hhi(pa) vanishes, or if &p

is the semivertex angle of the tip cone

sin (ni + %)(‘be - Ql) =0
or clearly

ix
ni-

= — - (148)
o - &

OV o

Therefore, except for impractical included angles &, - &1, ‘only posi-

tive values of ni will enter into the problem. The norms of the
functions are easily calculated

%2 ny2 sine(ni + %) (o - 1)

(sin ¢ sin q>1)2

2
Vni

d(cos o)

1

2

= (149)
(2ni + 1) sin ¢4

Then, in the asymptotic representation, the Green's function becomes

-

s aup) = - sin (ni + %)(w - @1) sin (ni + %)(5 - Ei) B in f<a
e o g TR 1 -
> (150)
- ) sin ( + %)(db - s'bl) sin (ni + %)(3 - 31) D sin o
‘L R,u; a,B) = - I a,'ni"l o & R>a

1 J
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where ¢ i1s the varisble of integration corresponding to ¢; that is,

—

cos ¢ = B. By means of these results, the perturbation stream function

¥W(2)(R,u) may be evaluated directly from equation (146). The inte-
grations offer no essential difficulty.

EXAMPLE FOR CONICAL TURBOMACHINE

As an example of the analysis of the conical turbomachine problem,
consider the flow through such a configuration having a root semivertex
angle of @7 = n/6 and a tip semivertex angle of ¢p = /4. Assume a
single blade row containing an infinite number of blades of chord c
and angular velocity w, and located with its center at R = R;. The
blade aspect ratio Ry(0p - 01)fc is equal to 2.0. Let Uy(Ry) be

the mean through-flow velocity on the spherical surface R = Ry, and
assume that the flow is uniform and undisturbed at R — e,

The stream function Il’( 1) corresponding *o the mean flow is simply
1
# (o) = Uy (Ro) Bo (co8 @1 - cos 0) (151)

The stream function w(z)(R,p) satisfies equation (140) and to solve
this it is necessary to prescribe conditions at the blade row so that
the function #£(R,n) may be evaluated. For the present exsmple the
distribution of the angular momentum will be prescribed and for con-
venience will be given as a distribution similar to that used for the
examples of the axial turbomachine calculation. The angular momentum is

vR sin ¢ = 0 R'—?Ro‘*% b
VR sin @ = kU,c sin%(-Rﬁ+%-§) R, + 5§ 2R 2R,
YR sin 0 = k 20° sin2<pE+2(_RQ_:_§l_
. b y (152)
e
vRsind>=%kacsin2¢ R0-5-2R>04
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Tt will be assumed further that the blade leading edge is proportioned
so that Fp = 0. The angular momentum is prescribed so that it is con-

tinuous and its derivative Sﬁ-(vR sin ¢), proportional to the tangential

force exerted by the blade row, is continuous and vanishes at the trailing
edge R =R, - e, With these values of the angular momentum and the
definition of #£(R,p), it is easily shown that

£(R,u) = -Upa(R)p(1 - )

where the function g(R) is

g(R) = 0 RZ R+ 3
]
ks(ﬁo,,;. B)-O;R
_[(Ro .1 R B 2 ¢/ U, c>
o = (23 - B Uo(®) otz SR
R =

__g-— Bo - R} - R ] @R
w-feepos) - HES) ET R

R
o]
By -5 SRSR,
3 aR
) -3 EEE T f -2 ms 0
& s Uo(R) 2
R b

Therefore, inserting the result of equations (153) and (150) into the
general solution, equation (1L46), it follows that

Z ) S &)
T8
(2)(R p') = -0, (RQ anz(:lj + 1) L- “-2 (iR.i)—n'j g(a) <_&_ nj+l ao X
Ro 0 Ro;

Ho - .
Hn,(B)B\L - g2 ap (155)
Lk
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where the appropriate pairs of exponents for EL and = are employed.

R Ry
For practical calculation, it is important to note that the integral

g(a)

must be evalugted as

G

g(a) )nj+l do = X g(a)(%>n‘j+lda+ . g(a)(%)-nj da  (156)

c_
o
L—
&Fle

R -Ilj R nj+1
and the gppropriate factors ﬁ; -and |[— s respectively,

R,
assoclated with each portion of the integral. This integral is there-
fore a function of R, and some care must be exercised in differentiating
the stream function with respect to R before the integration is carried
out.

For evaluation of the present example, the asymptotic values of
the functions Hﬁ(p) and the corresponding characteristic values will

be used as an adequate approximation. Then according to equations (147)

and (148), the perturbation stream function w(e)(R,u) may be written
approximately as




73 )n3+17 oo "(:}
- \Ro
)(R,u') ~ \I ¢ sin Jﬂ(dp F1 ) gla) o

da X
o - 91 —nJ (g_)nd"'l
ﬁﬂo ddo B/
#1
: r s1n mfﬁ ;“ ) s1:3/28 cos B ap (157)
Joo  \27Y
(2) 1 wl®
For actual calculation the perturbation through-flow veloclty, U = 3 1s of
intereat and may be evaluated directly as . Rein ¢ R 0
o Z /7 \2s-1
\ Eﬁe‘b+(¢ndﬂh) sin e \(‘Pg)j _W
0B (r,0) - \Co ot (i e ) ls(r,g) (159)
81n3/2g 2" "1 .E) J
I_RO -
where
mee
2 -9
S(R,J) = [ gla) |\ o, F sin J:u’(ﬁ i}) 51023 cos p dp (159)
RO ,Cﬁ- \DJ“'l RO L(Dl ?2 - y
o k)T

8L

7192 NI VOV
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and

2
tan 75 = —3— tan 0, (160)
02 - 93

The distribution of the perturbation through-flow velocity can now be
calculated for the g(R) wgiven by equations (154) by a straightforward
combination of gnalytical and numerical methods.

Some features may be noted, however, without carrying out the
actual calculgtions. The variations of the through-flow velocity is
governed, except very close to the blade row, by the lowest power of
R/R, occurring in the expansion given by equation (158), that is,

(R/Ro)nl—l. The rapid decay of the through-flow velocity perturbation
follows directly from the fact that the included cone angle &, ~ &
is only ﬁ/12 and consequently the asymptotic values of the nj are

125 - %. Therefore, downstream of the blade row the perturbations decay

at least as fast as (R/Ro)lo'5. This large value of the first charac-
teristic number n; also determines the disappearance of the velocity

perturbation downstream of the blade row. PFor since the mean through-

flow velocity increases as C&ﬂ&g—a, the ratio of the perturbation

through-flow velocity then behaves as H(_l)ii‘l ~ (R/R,)12-° downstresm
U\ (R)
of the blade row.

SUMMARY OF RESULTS

The flow of an incompressible inviscid fluid through a turbomachine
with blade rows consisting of an infinite number of similar infinitely
thin blades has been investigated theoretically in order to examine and
describe the three-dimensional flow phenomena and to illustrate the
methods of calculation developed. The following results have been
obtained from the general analysis and from examples when the inner and
outer boundaries of the turbomachine and the flow conditions far upstream
of the blade row are prescribed.

. (1) The velocity components in a plane through the axis of sym-
metry are determined, through a nonlinesr differential equation, by the
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angular momentum of the fluid about the axis and the blade force at the
leading edge normal to the stream surfaces.

(2) The differential equation for the velocity components may be
linearized with good accuracy by assuming an approximate shape for the '
stream surfaces in the nonlinear terms.

(3) The problem for the axial turbomachine may be linearized, when
the distortion of the through-flow velocity is small, by assuming the
stream surfaces to be concentric cylinders. The first-order linearized
flow through the axial turbomachine may be solved when any one of the
following combinations of conditions at the blades is prescribed.

(a) The blade loading, that is, the tangential force component
and the radial force at the leading edge

(b) The distribution of angular momentum and radial blade force
at the leading edge

(c) The distribution of total head and radial blade force at the
leading edge

(@) The distribution of blade shape

(4) For any specific problem of axial turbomachines, the linearized
three-dimensional flow can be calculated either analytically or by a
simple punched-card method.

(5) Calculations of single rotating blade rows with aspect ratios
of 2 and 2/3 and with a specific distribution of anguler momentum indi-
cated that for blades of aspect ratio in excess of 2.0, a three-
dimensional flow takes place both upstream of the leading edge and down-
stream of the trailing edge sufficiently to have noticeable influence
on the blade angles. For blades of aspect ratio less than 1.0, essen-
tially all of the three-dimensional flow takes place within the blade

rov,

(6) When the radial variation of the through-flow velocity is large,
the simple linearization is inadequate. A more accurate lineariza-
tion allows either analytic solution or a numerical solution employing
the same punched-card calculation described in the first-order solution.

(7) An exponential approximation for the axiel and radial velocity
components was developed whose simplicity allows investigation of complex
axial turbomachine configurations. Its use is illustrated by solutions .
for the multistage turbomachine and the solution for the single blade

row with prescribed shape.



NACA TN 261k 81

(8) The interference between neighboring blade rows of a multi-
stage turbomachine may be neglected when the ratio of blade length to
distance between blade-row centers is less than 1.0. However, when
this ratio exceeds 3.0, the interference may become an important
influence on the flow pattern and a significant influence upon blade
shape.

(9) The change of axial velocity distribution caused by off-design
operation was calculated for a blade row which imparted essentially
"s01lid body" rotation st design conditions. The results indicated that
the distortion of the axial velocity profile was significantly less for
low than for high blade aspect ratios,

(10) The linearized flow through a conical turbomachine may be
solved completely if the original expression is linearized by assuming
in the nonlinear terms that the approximate stream surfaces are coaxial
cones with common vertex,

California Institute of Technology
Pasadena, Calif., May 15, 1950
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TABLE I

VALUES OF CEARACTERTSTIC FUNCTIONS Ul(enrl ri)
1

85

FOR HUB RATTO . 0.6
ro
1
n 1 2 3 4 5
r/ry
1,000000 0 0 0 0 0
1.033333 -.0207890 -.0215108 -.0201126 -.0195299 -.0187956
1.066667 -.0kok291 -.0384502 ~-.0352816 ~.0311073 -. 0261670
1.100000 -.0585022 -.0521257 ~.0k2oko66 ~.0306421 -.0182290
1.133333 -. 0746116 -, 0603877 -.040261. -.0186722 -.0000153
1.166667 -.0885296 -. 0626058 -.0295280 -.0000218 .0176792
1. 200000 -.0999063 -.0588946 -.0127596 .0181255 . 0246689
1.233333 -.1085733 -.0k93220 .0062941, . 0289209 . 0172194
1.266667 -.1143978 -.0354039 .02348U45 .0285556 .0000192
1. 300000 -.2173144 -.0184335 .0351638 . 0174400 ~-.0167h452
1.333333 -.1173253 -.0001142 .0390116 . 0000275 -.0234020
1.36666T -.1144993 .0177638 .0343545 -.0169618 -.01635T5
1. 400000 -.1089687 .0334915 .0224138 -. 0271434 -.0000166
1.1%33333 ~.1009259 .0561T1 . 0059270 -.0263408 .0159489
1. 466667 -.0906173 . 0530488 -.0114577 -.0164113 . 0223122
1.500000 -.0783375 . 0551800 -.0259897 -.0000182 . 0156209
1.533333 -.064l207 .0519220 -.03k5854 . 0160214 . 0000096
1.566667 -.0k92333 . 0437050 -.03554h5 .0256576 -.0152597
1.600000 -.0331653 . 0314260 -.0288149 . 0253987 -.0213618
1.633333 -.0166187 .0163537 -.0160054 . 0155376 -.0149499
1.666667 0 o] o] o} 0
n 6 T 8 9 10
r/rl
1.,000000 0 0 0 0
1.033333 ~. 0179205 -.0169171 -.0158001 -.0145855 -.0132906
1.066667 -.0207392 -.0151223 -.0096145 -.0044943 -.0000023
1.100000 -.0066433 .0028725 . 0094607 .0127511 .0128815
1.133333 . 0124248 .0172405 . 0150047 . 0082920 . 0000039
1.166667 .0208482 ,0126417 . 0000067 -.0098294 -.0125079
1.200000 .0120932 -, 0054357 -.0146598 -.0110896 -. 0000046
1.233333 -.0062633 -.0171639 -.0089443 .0061313 .0121651
1.266667 -.0190028 -.0100880 .0038138 . 0125990 . 0000048
1.300000 -.0159855 . 0076763 . 0140887 -.0019021 -.0118490
1.333333 -.0000129 .0167147 . 0000073 -.0130000 ~. 0000046
1.366667 .0155757 .0075033 -.0137365 -. 0020010 .0115563
1. 400000 .0181051 -.0095809 -.0083945 .0120581 . 0000042
1.433333 . 0058220 -.0159236 ,0082862 . 0056626 -.0112843.
1. 466667 -.0109211 -.0049308 .0132635 -.0100252 -.0000033
1.500000 -.0183851 .0111387 . 0000046 -. 0086691 .0110307
1.533333 ~-.0104938 .0148249 -.0129691 . 0071592 . 0000024
1.566667 .0055562 . 0024157 ~,0079327 . 0106866 -.0107934
1.600000 .0169288 -.0123424 .0078457 ~.0036656 -.0000013
1.633333 .0142547 ~.0134561 . 0125672 ~.0116009 .0105710
1.666667 0 0 o} 0 0
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TABIE IT
VALUES OF INFLUENCE FUNCTION K(r,z; «,B) FOR HUB RATIO ;l-o.s
2
(a) £ = 1.033333
1
I'/l‘l
1.066667}1.133333|1.200000]1.266667 |1.333333|1. 400000 |1. 46666T{1.533333 |1. 600000
z - (p/r1)
0.033333 0.010513 [0.011491 |0.011283|0. 009912 [0. 008649 |0. 006898 |0. 005293 |0, 003481 |0, 001788
.100000 .00k793| .00720%| .007853| 007545 | 006748 .005639 | .00k362) .002972| .001516
. 166667 .0026451 .00k510| 005398 .005528 | .005155( .OcoMML3 | .003511| .002430] .001249
.233333 .001616| .002924| .003T16| .003935| .003860! .003M1T7| .00275%| .001937| .001007
. 300000 .001052| .001958| .002579| .002870{ .002857| .002590| .002122| 001308 | ,000T89
. 366667 .000707} .0013k2] .001811| .002063] .002098| .001937| .001611| .001156| .000607
.433333 .000488 | .000936] .001282| .001485} .001535| .001437| .001209| .000875 | .000k463
.500000 .0003%2| .000661] .000913{ .001072} .001121| .001060] .000900| .000655| .000348
566667 .000243| .o00k70} . .000TTh} .000818| .000TT9| .000665| .000LBT| .000260
.633333 .000172| .000336] .cook72{ .000561] .000595| .0005T1| .000490| .000361| .000192
. 700000 .000124| 000243} .0003%1] .000%0T| .00043%| .000W1I8] .000361] .000265)| .0001k2
. T66667 .000089| .0001T5| 000246 .000296| .000316] .000305| .00026%| .000195] .o0010k
.833333 .00006%| .000126| .000178| .00021%] .000230{ .000223| .00019%| .000143| .000076
.900000 .000047| .000092| .000129| .000156| .000168| .000162( .000141| ,000105(| .000036
966667 .00003%4| .000067] .000095| .000113| .000122| .000119| .000103| .000076| .0000LY
1.033333 .000025| .oo0048| .000068| .000082| 000089 .000087] .00007T5| .000056| .000030
1.100000 .000018| .000035| .000050| .000060| .000065| .0C00063| .000055| .0000L41| 000022
1.166667 .000013| .000025| .000036| .000044] .0000LT] . .0000k0] .000030| .000016
1.233333 .000009| .000019] .000026] .000032| .000034| .000033| .000029| .000022| ,000012
1,300000 .000007| .000013| .000019{ .000023| .000025| .00002%| .000021| .000016| .000008
(v) £ = 1,100000
T3
r/ry
1.06666T |1.133333 [1.200000]1.266667 |1.333333|1. 400000 |1. k66667 |1.533333 |1.600000
z - (B/r1) ‘
0.033333 0.022048 [0.033845 [0.033305]0.030556 10.026370 |0. 021952 {0. 016847 0. 011578 |0.005896
.100000 .011999] .020138| .023070} .022723| .020637| .017545] .013769| .009516] .004B95
. 166667 .007159 | .012737| .015772| .016521| .015652| .013678| .010935| .007645 | 003960
.233333 .ooksk9 | ,00838%| .0105878| .011898 | .011659| .o10kk2] . .00601%| .003137
. 300000 .003020| .005685| .00758%| .00854k| .008597( .00T86L| 0064961 .o0kEU2] 00243k
. 366667 .002060] .003933| .005345| .006145| .006301) .005859( .00k90L| .003533| .001861
.1433333 .001434 | 002759 | .003797| .o0h428 | .00k606| .004333] .003662| .002659 | .001408
.500000 .001011.| .001956| .002735| .003199 | .003359] .003191| .002717| .001985| .001055
. 566667 .000719} .001397| .001950| .00231%| .0024i9| .002342| .002006| .001472] .000785
.633333 .000515] .001003]| .001k06| .0016TT| 001785 .001T15]| 001476 001086 000580
. 700000 .000371] .000722| .001016| .001217| .001299| .001255| .001083] .000799| .000L2T
. T66667 .000267| .000522| .000737| .00088%| .00094T| .000916} .000792} .000586| .000313
.833333 .000193| .000378| .00053%| .oco6k2 | .000689| .000668| .000580f .000429 | .000230
.900000 .000140| 000274 | .000388| .000467 | .000502| .000488 | .000k2L} 00031k | .000168
966667 .000102] .000199| .000282| ,0003%0| .000365{ .000355| .000309| .000229| .000123
1.033333 .000073{ 000145 .000205] .000248 | .000266] .000259 | .000225| .000167| .000089
1.100000 .000053] .000105| .000148} .000180| .000194| .000189} .000165| .000122| 000066
1.166667 .000039 | .000076] .000131| .000141 | .0001%1| .000138 | .000120f ,000089 ] .
1.233333 .000028 | 000036 .000079| .000095 | .000103| .000100| .000087] .000065 | .000035
1.300000 .000021 | .000040| .000057]| .000069 | .000075] 000073 | .000064] .000OLT ]| 000025
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TABLE II.- Continued
VALUES OF INFLUENCE FUNCTION E(r,z; a,B) FOR HUB RATIO %no.G-Continued
(c) & = 1.166667
n
1‘/1'1
1.066667|1.133333]1.200000| 1.266667| 1. 333333 | 1. 400000|1. 466667 ]1.533333 | 1. 600000
z - (B/r1)
0.033333 0.022760|0.044703{0.054771|0.051300| 0. 045182 |0.037337{0.028975 |0.019772{0.010149
. 100000 .015088| .02826%| .035918] .037176] .o34hgo| .029585| .023338] .016168| .008330
.166667 -009946| .018643| ,024398( 026564 .025738| .022773] .018336| .012869| .0066T9
.233333 .0066T8| .012636| .016907| .018990] .018974| .017212| .014113] .010026| .005239
. 300000 .004571] .008731| .011870| .013618] .013901| .012853| .010698] .007680| .00%k039
. 366667 .003181| .006119| .008%16] .009797| .010156]) .069523] .008017| .005805] .003068
.133333 .0022h0| .00k4332| .006008| 007068 .00Thog| .007018] .005962]| .o04345| 002306
.500000 .001592| .003090| .004312] ,005110| .005398| .005155] .oolhoT| .003228] .001718
566667 .001139| .002217| .00310T| .00370L| .003933| .003777| .0032k6( .002386| .001273
.633333 .000819| .001597 - 00224k .002683| .002865] .002762] .002382| .001756] .000939
. 700000 .000590| ,001153| .001625| .001949] .002807| .002018| .0017hS5] .001288| .000690
. 166667 .000427| .000835| .001179| .001k16| .001520] .001k73| .001276| .00094%| .000505
.833333 .000309| .000605| .000855| .001030f .001106| .00107k| .000932| .000691| .000370
.900000 .00022k | ,o000kko| .000622| .000T48| .000806| .000783| .000681] .000505| .000270
.966667 .000163| ,000319| .000k52| .00054k| .000587| .0005TL| .00049T| .000368| .000198
1.033333 .000119{ .000232| .000328| .000397| .oookeT| .000416] .000362 . 000144
1,2100000 .000086| .000169| .000239| .000£88| .000311| .000304]| .000263| .000196| .000105
1. 166667 .000062| .000122| .0001TH| .000210| .000226] .000221] .000192{ .0001243| .0000TT
1.233333 .000045| ,000089| .000126 .000153] .000165| .000161| .0001k0]| .00010k| .000056
1. 300000 .000033| .000065| .000092| .000111| .000120| .000117[ .000102{ .000076] .0000k1L
(d) £ =1.233333
Ty
1‘/1’1
1.06666T |1.2333331.200000] 1. 266667 |1. 333333 |1. k00000 | 1. 466667 |1.533333|1. 600000
z - (B/r1)
0.033333 0.021234}0.042967|0.06343%]0.070758|0. 063681 0. 053492]0. 041352 |0. 028428 |0. 024523
.100000 .015481] .030532} .042716| .0k8435] .okT069| .ok1226] .032B32{ .022859| .01180%
. 166667 .011012| .021420| .029628| .03%072| .034315( .031070| .025345| .017917| .009331
.233333 .007786{ .015083| .020866| .o24ke7h| .024968 | .023121) .019212] .013751| .007213
. 300000 .005508 | .010682] .0148hk1| .o17h27| .018167| .017075| .014380| .010k02] .005kok
. 366667 .003919| .007615| .010623| .012564] .013223| .012558| .010675] .007782| 004128
. 433333 . .005454] .007637| .009083| .009626] .009209| .007883| .005TTT| .003075
.500000 .002011{ .003924| .005510| .006580{ .00T00T| .006ThL| .005T98| .004265| 002276
.56666T .001449| .002831] .003985| .00h773| .005102| .00k925| 004253 .003137] .001678
.633333 .001047} .0020k7| .002887] .003k66} .003715] .003597| .003113| .002301) .001232
. 700000 .000758 | .001484] .002094| .002519| .002706| .00262%| .002275| .00168%| .000903
. 766667 .000549 | .001076| .001521| .001832{ .001970| .001913| .001661| .001231| .000660
.833333 .000399| .000781| .001105| .001333| .00143%k| .001395| .001212| .000899( .000482
. 900000 .000290| .000568| .00080k4| .000969| .001045] .001017] .00088%| 000655 | .000352
966667 .000211 | ,000413| .000585] .000705| 000761 .0007Th1| .00064k| 0008 | 000257
1.033333 .000153| .000301{ .000425| .000514] .000554] .000539] .000469 | 000349 | 000187
1.100000 .000111 | .000218 | .000309] .00037%| .000403| .000394] .000343| .000255| .000137
1.166667 .000081 | .000159| .000225| .000272] .000293| .000286| .000249 | ,000186| .000100
1.233333 .000059 | .000116| .000164| 000198} .000214 .000182] .000135| .000073
1.300000 .000043 | .000084] .000119| .0001%:| .000156] .000152| .000132]) . . 000053
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TABLE IT.- Continued

p g
VALUES OF INFLUENCE FUNCTION K(r,z; a,8) FOR HUB RATIO r—zz = 0.6 - Continued

(e) 2 = 1.300000
1

1‘/1‘1
1.066667 |1.133333 [1.200000| 1. 266667 |1. 333333 | 1. 100000 |1. 466667 |1.533333 [1. 600000
z - (p/x1)
0.033333 0.018757 |0.038527 |0.058330] 0. 076460 |0. 080450 | 0. 065084 |0. 054200 0. 037263 |0. 019119
.100000 .014473| 029139 .ok2765| .052902| .055932] .0512h1| .oh1661| .029281| .015192
166667 .010929| .021516} .030934} .037542] .039860| .03749T| .031298| .022h13]| .011750
.233333 .007969 | .015709| .022351| .026947] .028715] .027378| .023221f .016843| .008898
. 300000 .005810| .01k k| .o16170] .019459] .020796| .0199TT| .017107| 012517 | .0O665L
. 366667 .00k223| .008282] .o11717| .014095| .0150981 .01457h| .012553| .009236| .00kg26
.433333 .003066| 006009} .008497| .010229| .010978| .010628| .009189( .006785| .003627
.500000 .002227| .ook362} .006269| .007431| .007987| .007TT50| 006716 .00L9E9| 002661
566667 .001617| .003168} .ookk82| .005403( .00581%| .0056k9| .ookook| .003633| 001947
.633333 .001174] .002302| .003259| .003930| .00k233| .00M11T| .003578| .002653| .o0Lk2k
. 700000 .0008551 .001674| .002369| .002859| .003082! .002999| .002609) .001935| .001039
. T6666T .000621| .001217| .001724| .002081| .002244] .002185| .001901{ .001h12| 000758
.833333 .000451| .000885| .00125%| .001514| .00163%| .001592| .001385] .001029} .000552
. 900000 .000329 | .coo6hk| .000913| .001203| .001190] .001159| .001010{ .00OT50| .000LO3
966667 .000239| .cook70) .000665| .000802| .000866| .000845] .000735] 000546 00029k
1.033333 .000174| .o0o0341 ] .000483| .000584| .000631| .000615] .000536) .000398| 000214
1.100000 .000127| 000248 | .000352] .o00k26] .000k59| 0004k | .000390| .000290| .000156
1.166667 .000092| .000181| .000257] .000310{ .00033%| .000326] .000284| .000211| .000113
1.233333 .000067| .000132| .000187] .000226} .000243] .000237| .000207{ .00015%| .000083
1.300000 .000049 | .000096] .000136] .0001264| .00017T7] 000173} .000151| .000122| .000060
(£) = = 1.366667
Ty
rfr)
1.066667 11.133333 |1.200000 |1. 266667 |1. 333333 |2. 400000 [1. 466567 [1.533333 |1. 600000
z - (p/r1)

0.033333 0.015951 0.032681 [0.050176]0. 067342 [0.082529 [0. 082532 [0. 066265 |0. 046115 (0.023654
.100000 .012673 | .0257h2| .038567] .okg9hT] 057380 057115 | 048595 034878 | 018252
166667 .009800] .019703 | .028974] .036547| 040895 | .0k0539 | .035160] 025759 | .013660
.233333 .007h23 | 01480k | .021495] 026685 029462 029100 | 025410 | 018809 | .010055
. 300000 .005550] .011001 | .01583%| 019471 ] .021335| .02101%| .018387| .013668 | .007332
. 366667 .004109 | .008117| .011620| .01k20%k{ .015491 | .015222| 013322} ,009919 | .005330
.433333 .003025 | .005962| .008505| .010358 | .01126k4 | .011048 ] 009664} 007297 | .0038TL
.500000 .002219 | 004367 | .006217) 007552 .008196| 008027 | .00T016 | .005225 ] ,002810
566667 .001625 | .003192| .004539] 005506} .005965 | .005836| 005098 | .003795 | 002041
.633333 .001187 | .002332| .003311| .004013 | .004343| .00k246| 0037061 .002758 | .001483
. T00000 .0008671 .001702] .002415| .002923 | .003163] .003089 | .002695| .002005 | .001078
. T66667 .000631 | 001241 | .001759| .002129 | .002302] .002248 | 001961 | .001459 | .000TBY
.833333 .000461 | .00090% | .001283] .001551 | .001676] 001637} 001427 | 001062 .0005T0
.900000 .000336 | .000659| .000935| .001130 | .001221] .001191| .001038 | .000T72 | .000k15
966667 .000245 | .o00k80 | .000680| .000823 | 000889 .000867 | .000T56 | 000562 000302
1.033333 .0001T79 | .000350 | .000LO6} . .000647 ] .000631 | .000550 | .000408 | . 000220
1.100000 .000130} .000255 | .000361] .000437| .000%TL| 000460 | .0O0OLOL | . 000298 | 000160
1.166667 .00009% | .000185 | .000263| .000318 | .000343 | .00033k | .000292| .000217 | .000116
1.233333 .000069 | .000135 | .000192] .000232] .000250 | .00024k | 000212 | .000158 | .000085
1. 300000 .000050 | .000098 | 000140} .000268 | .000182] .0001TT | .000155 | .000115 | .000062
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TABLE II.- Continued
VALUES OF INFLUENCE FUNCTION K{(r,z; «,B8) FOR HUB RATIO :Tlno.6- Continued
2
(8) = = 1.433333
r/rl
1.066667}1.133333{1.200000|1. 266667 |1.333333 |1. 400000 |1. 466667 |1.533333| 1. 600000
z - (B/r1)
0.033333 0.012753|0.026308|0.04%02660.054882|0. 068754 0. 080373 0. 075789 |0. 05409%] 0. 028167
.100000 .010366| .021154f .031978| .0k2297] .050825| .055035] .051066| .038449| 020542
. 166667 .009194| .016578| .024691) .031877| .037057| .038725| 035435 .026985| .01k616
.233333 . 006333 .0127£15+ L018T16 .023725| .026965| .027595| .02496%| .019008| .010337
. 300000 . 22| ,009 .01%010{ .017521| .019622{ .019812| .01TT59| .013k65| .00T
. 366667 .003625] .007200} .010h02| .012885| .01ke83| .01b4284| .o1271k| .009601| .005205
.433333 .002699] .005345| .007681| .009L450| .010398| .010329| .0091Lk3 006813 .003722
.500000 .001998| .003946| .005650| .006916| .0075T0] .00ThB3| .006597] .00k9 . 002674
566667 .001k72| .002903| .o0k1kk| .00505k| .005513) .005L428 T71| .003569| .o001927
.633333 .001081{ .0062130| .003033| .003691| .coko1lk| .0039k2 k5Tl .002582| .001393
. 700000 .000793| .001558] .002217| .002693| .002923] .002865| .002508 | .0018T71| .001007
. 166667 .000580| .001139] .001619{ .001963} .002128| .00208k| .001821{ .0013%8| .000T31L
.833333 .000423| ,000832] .001182| .001431| .001550| .001516| .00132%| .000986{ .000530
.900000 .000309| .000607} .000862| .001043(| .001129| .001102| .000963| .000716| .000385
966667 .000226] .o0004k2| .000628| .000760| .000822| .000802| .000700| .000521| .000280
1.033333 .000165{ .000323| .000L458| .000553| .000599| .00058k] 000509 .000379] .00020k
1.100000 .000120| .000236} .00033%| .ocokok| .oo0k36] .000k2S5| .000370| .00027T5| .000148
1.166667 .000087| .000171] .000243| .000294| .000317| .000309| .000270| .000201| .000108
1.233333 .000064] .000125| .0001TT| .00021%4| .000232| .000225| .000196| .0001L5| .0C00T8
1. 300000 .000046] .000091] .000129] .000156| .000168| .000164| .000143| .C00106] .00005T
(r) = = 1.500000
B
r/rl
1.066667| 1.133333| 1.200000]1.266667| 1. 333333] 1. 400000 |1. 46666T |1.533333| 1. 600000
z - (8/ry)
0.033333 0.009384 0.019254} 0.029694]0.040335|0. 051362 0. 061350 |0. 068857 [0.059183] 0. 031752
.100000 .00T703} .015752| .023929]| .031961) .039212] . 75| .0k5187] 037453 021063
. 166667 L0061 .012339| .018805] .o2u604| .029269| .031787| .030T1L6| .024721| .01389%
.233333 .ook843] .009769| .01u4TE| 018596 .0215TT| .022731| .021293| 016764 .009333
. 300000 .003734 .007h83] .010975] .013889] .015812{ .01630L] .014956( .011586| .006391
. 366667 .002836| .003656| .008225| .010289| .011551f .011729| .010607{ .008123| .ookhh8
.433333 .002131] .ook233| .006118| .007585| ,008k27| .008462| .00T5T3| .005753| .003133
.500000 .001589| .003146| .o04523| .005570{ .0061h42| .006119) .005435| .004103{ .002228
566667 .001177| .00232%| .003330| .o00ko81| .ocO0MNTS| .00M433| .003917| .0029k3| .001593
.633333 .000866| .001722] .0024hk| .002085| .003259| .00321%| .002830] .002120| .0011Lk6
. T00000 .000638] .001256] .001T90{ .002181| .00237Th| .00233%4| .0020k9| .001532| .000825
. T6666T .000467 .000920| .001309| .001591| .001729| .001696| .001L4B6| 001109 .000597
.833333 .000342| .000673| .000957| .001161f .001259| .001233} .001079| .00080k| .000433
900000 .000251| .oo00k92| .000699] .000846] .00091T| .000897| .000784| .00058%| .00031%
966667 .000183| .000359| .000510| .000616| .000667| .000653| .000569| .00042k| . 000229
1.033333 .000133| .000262] .000371] .0o00Lk9| .000486| .o00hT5 | .000k15| .000309| .000166
1.100000 .000098| .000190] .000270| .000328| .000354| .000345 ) .000302| .000225| .000121
1.166667 .000071| .000139| .000198| .000239| .000258| .000251]| .000219 | .000163| .000087
1.233333 .000052| .000101| .0001k4%4| .0001TH| .000188| .000183| .000160] .000128| .000064
1.300000 .000038] .00007k| .000105] .000126| .000137| .000133| .000116{ .000086] .00004E
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TABLE II.- Concluded

VALUES OF INFLUENCE FUNCTION K(r,z; «,B) FOR HUB RATIO . 0.6 - Concluded

T2

(1) :—1 = 1.566667

r/ry
1.066667 |1.133333 | 1. 200000 1. 26666T|1.333333|1. k00000 |1. 46666T {1.533333 |1, 600000
z - (B/r1)
0.033333 0.005742 |0.011889}0. 018181 {0. 024978 | 0. 031581 | 0. 038500 [0. 044098 |0. 047175 {0.032352
. 100000 .004T70| .009768] .01486T| .019966| .024T19| .02863%| .030569{ .028098| .017631
.166667 .003857| .007846| .011813] .015567| .018748| .020825| .020911| .017783| .010529
.233333 .003057| .006173] .009181| .011885| .013968{ .015001| .014h29 | .0L1LT16| .006694
. 300000 .002371| .ook76k| .00T020| .008950] .010299] .010TTH| .010066| .00TOUS| .oOkkk9
.366667 .001813| .003626| .005296| .006668| .00T550( .00TT9| 007093 .0054981 003038
.%33333 .001372| .002729| .003958| .00h93k| .005518| .005586| .c05042] .003859] .002114
.500000 .001028 | .002037} .002938| .003633] .00k027| .00k035} .003606| .002735| .001489
. 566667 .000763] .001510{ .002169]| .002667| .002936] .002920| .002591| .001954] .001060
.633333 .000565| .001115f .001595| .001953| .002139| .002116| .0012867| .001403| .000TS9
. 700000 .oook16| .000820| .001170| .001k28| .001557| .001536] .001350| .001012| .000546
. T66667 .000306| .000602| .000857| .0010%43| .001135] .001116| .0009T8| .000731| .00039%
.833333 .000224| .oookko| .000626| .000761| .000826} .000811| .000T10| .000530| .000285
.900000 .000164| .000321] .o000k5T| .000555) .000602| .000590| .000515| .000384| .000207
.966667 .000120| .000235] .00033k%| . .000438{ .000428| .000374| .000279] .000150
1.033333 .000087| .000172| .00024k! .000294| .000319| .000312| .000272| .000202| .000109
1.100000 .000064| .000125] .000177| .000215| .000232| .000227| .000198 | .000148{ .000080
1.166667 .0000k7}| .000091} .000130| .000157| .000169( .000165| .00014k| .000107| .00005T
1.233333 .00003%| .000067| .000094| .000114| .000223| .000120] .000105} .000078| .0000L2
1.300000 .000025| .000048| .000069| .000083| .000090| .000087( .000076| .000057| .000030
(5 = =1.633333
ry
r/ry
1.066667|1.133333|1.200000|1.266667| 1. 333333]1. 400000 | 1. 466667|1.533333|1. 600000
z - (8/r1)

0.033333 0.001975 |0.00%010| 0. 006262 0. 008430 0.010919]0. 013001 {0.015482}0.016615]0. 0160T1L

.100000 .001631| .003341| .005094{ .006348| .008519] .009935| .010825| .010450{ .007326
. 166667 .00132%| .002694| .00k065{ .005375] .006509| .007300| .00TLE8| .006558| .0040S50
.233333 .001056| .002132| .003173| .ook122| .00k8T5| .005286| .005156] .00k263| .002482
. 300000. .000821] .001650| .002438| .003120| .003607| .003802| .003585| .002863| .001619
. 366667 .000629| .001261) .001846| .002330{ .002651| .002735| .002521| .001967| .001093
.433333 .000478| .000952} .001383| .001729| .001939| .001971| .001T86| .0013T4| .000TS5
.500000 .000359| .o000712| .001028| .001275| .001416| .001k23| .001276| .0009T0| .000530
566667 .000267] .000528| .000760| .000936| .001032| .001030| .000916| .000692] .000375
.633333 .000198| .000391| .000560| .000687| .000752| .000THE| .000659]| . . 000268
. 700000 .000146| .000288{ .oook11| .000502| .000548| .0005hk1]| .000kT6| .000357] .000193
. T66667 .000107| .000211| .000301| .000367| .000399| .000392| .00034%| .000258| .000139
.833333 .000078| .000154 .000220| .000267| .000291] .000286{ .000250| .000187| .000LO0L
.900000 .000057| .000123| .000161] .000195| .000212| .000207| .000182| .000136| .0000T3
.96666T .000043| .000082| .000117] .000143| .000154| .000150| .000132| . 000052
1.033333 .000031| .000061| .000086] .00010%4| .000112| .000109| .000095| .0000TL| .000033
1.3100000 .000023| .0000k:| .000063{ .000076| .000082] .000080| .000069| .000052| .000028
1.166667 .000016| .000032| .000046] .000055] .000059| .000058| .000051| .000038| .000020
1.233333 .000012| .000023| .000033} .0000k0| .0000L3| .o00042| .000037| .000027| .000015
1.300000 .000009| .000017| .000024| .000029| .000032| .000031| .000027| .000020| .000011
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Figure l.- Coordinate system and veloclty components in axdal turbomachine,
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Figure 2.- Velocities induced by various vorticity components in axially
symmetric flow,
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Figure 3.- Stream-surface directions of tangential and normal differentiation.
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Figure lj.— Relationship between blade normal, blade force, and relative
velocity.
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Flgure 5,~ Relationship between angular momentum and total head along
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Figure 6.~ Schematlc diagram showing behavior of functio
in the meridional plane,
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Figure 7.- Grid for numerical integration of stream function $(3)(ri,zj).
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Figure 9.- Varlation of axial velocity from uniform according to simple

N

equilibrium theory. Curves independent of aspect ratio.

(5]

#T9¢ NI VOVN



r-f
N <

Z/C=—06 -4

-2

1.0 N T
NG/
-8 AN 77
.6 N\
) AN
/// AN
. AN
/ N\ O\
L L] \ \ [
-75  -50  -.25 w(om 25 50 75
22w,

Figure 10.- Variation of axial velocity distribution from that given by

simple equilibrium considerations,

Agpect ratio = 2,0.
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Flgure 1l1.- Variation of axial veloclty distribution from that given by
simple equilibrium considerations. Aspect ratio = 2/3,
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Figure 12.- Relation between exponent 3 and radius ratio rl/r2 for
blade row imparting constant angular velocity to fluid,
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Figure 13.- Schematic representation of multistage axlal turbomachine,
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Figure 1h.- Deflection of middle stream surface near entrance of multistage
axial turbomachine. Vertical scale magnified,
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Figure 16.— Effect of blade aspect ratio on axial velocity distortion

downstream of blade row with prescribed blade discharge angle.
Uniform axial velocity and zero tangential velocity upstream.
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Figure 17.— Effect of blade aspect ratio on head coefficient of blade
row with prescribed blade discharge angle. Uniform axial velocity
and zero tangential velocity upstream,




108
1.0
Y- l’l
ro-rj
.5
o)

NACA TN 261k

INERNA

QN 1.
\\\\\ 7’2(|—7:,_-e—R7=-)
\\\\ 103]
X | |7 s
\X%\(/( P

et

JAUAN
IR

IR A

Y o

o

)

wrz _.(l)*fz
wo*

Figure 18.- Distortion of axial velocity profile resulting from operating
single blade row off-design condition.
tangential velocity upstream.

Uniform axial velocity and



NACA TN 2614 109

Figure 19.- Coordinate system, velocity, and vorticity component
designations for conical turbomachine.
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